
2016 - 2017

NASA Student Launch

Proposal

1000 W. Foothill Blvd. Glendora, CA 91741

Aegis

Fragile Material Protection

September 30, 2016

Table of Contents

General Information	4
1. School Information	4
2. Adult Educators	4
3. Safety Officer	4
4. Team Leader	4
5. Team Members and Proposed Duties	5
6. NAR/TRA Sections	5
Facilities/Equipment	6
1. Facilities and Equipment Resources	6
Safety	12
1. Safety Plan	
1.1 NAR/TRA Procedures	23
1.2 Hazard Recognition and Pre-Launch Briefing	29
1.3 Caution Statements	
1.4 Rocketry Laws and Regulations	30
1.5 Rocket Motor Usage Plan	32
1.6 Safety Contract	33
Technical Design	33
1. Rocket and Payload Design	33
a. Vehicle Specification	33
b. Projected Altitude and Calculation	35
c. Parachute System Design	36
d. Motor Brand and Designation	37
e. Payload Specification	39
f. Vehicle, Recovery, and Payload Design Requirements	53
g. Technical Challenges and Solutions	64
Educational Engagement	65
Project Plan	
1. Project Timeline	
2. Budget	
3. Funding Plan	
4 Rocket Project Sustainability Plan	77

References	79
Appendix A: Citrus College Profile	80
Appendix B: MSDS Information	81
Appendix C: Protocols	82
Appendix D: Safety Contract	83
List of Figures	2
Figure 1: Team Organization Chart	5
Figure 2: Proposed Rocket	34
Figure 3: Aerotech M1500G Thrust Curve	38
Figure 4: Aerotech L2299G Thrust Curve	39
Figure 5: Proposed Container (Isometric View)	42
Figure 6: Inner Rack (Isometric Exploded View)	43
Figure 7: Inner Rack	44
Figure 8: Inner Rack (Cross Section View)	
Figure 9: Inner Rack Subsections (Close Up View)	46
Figure 10: Proposed Container (Exploded View)	47
Figure 11: Main Event Timeline	68
Figure 12: Outreach Event Timeline	72
List of Tables	2
Table 1: Team Member Proposed Duties	5
Table 2: Risk Matrix	13
Table 3: Severity Definition	14
Table 4: Likelihood of Occurrence Definition	14
Table 5: Facility Hazard Analysis and Mitigation	15
Table 6: Material Hazards Analysis and Mitigation	16
Table 7: Equipment Hazards Analysis and Mitigation	18
Table 8: Launch Vehicle Hazard Analysis and Mitigation	19
Table 9: Payload Hazard Analysis and Mitigation	20
Table 10: Outreach Hazard Analysis and Mitigation	21
Table 11: Environment Hazard Analysis and Mitigation	22
Table 12: NAR/TRA Safety Code and Compliance	24
Table 13: Minimum Distance for Launch Safety	28
Table 14: General Vehicle Dimension	33
Table 15: Rocket Materials and Construction Methods	
Table 16: Recovery System	
Table 17: Motor Specifications	
Table 18: Container Materials	
Table 19: Launch Vehicle Requirements	
Table 20: Recovery System Requirements	
Table 21: Fragile Material Protection	
Table 22: Technical Challenges in Fragile Material Experiment and Development	64
2	

Table 23: NASA SL Timeline	69
Table 24: Rocket Owls Outreach Sche	dule72
Table 25: Rocket Owls NASA SL Bud	get74
Table 26: Funding Plan	76
Commonly Used Acronyms	
AED	Automated External Defibrillator
APCP	Ammonium Perchlorate Composite Propellant
	.Bureau of Alcohol, Tobacco, Firearms and Explosives
BLS	Basic Life Support
BMP	Barometric Pressure
CAD	
CATO	
Cd	Coefficient of Drag
CPR	Cardiopulmonary Resuscitation
CNC	Computer Numerically Controlled
EMF	Electromotive Force
FAA	Federal Aviation Administration
FAR	The Friends of Amateur Rocketry
GUSD	Glendora Unified School District
HTC	
IMU	Inertial Measurement Unit
MDARS	Mojave Desert Advanced Rocketry Society
MSDS	
NAR	
PPE	
PS	Physical Science
NFPA	National Fire Protection Association
RAC	
ROC	Rocketry Organization of California
RSO	
STEM	Science, Technology, Engineering, and Mathematics
TRA	Tripoli Rocketry Association
UV	Ultraviolet

General Information

1. School Information

Citrus College 1000 W. Foothill Blvd Glendora, CA 91741

More information about Citrus College can be found in Appendix A.

2. Adult Educators

Dr. Lucia Riderer

- Team Advisor
- Physics Faculty lriderer@citruscollege.edu (626) 914-8763

3. Safety Officer

Janet <u>alonsojanet21@gmail.com</u> (626) 608-8584

4. Team Leader

Yvonne y.villapudua@gmail.com (909) 244-2662

Rick Maschek

- Team Mentor
- Director, Sugar Shot to Space rickmaschek@rocketmail.com (760) 953-0011

5. Team Members and Proposed Duties

Table 1 gives the title and proposed duties of the members of the Rocket Owls team.

Table 1: Team Member Proposed Duties			
Team Member	Title	Proposed Duties	
Isabella	Outreach Officer	Educational engagementRocket design and construction	
Janet	Safety Officer	Implementation of safety planCNC programmer	
Jimmy	Payload Specialist	Website maintenancePayload analysis	
Lillian	Payload Specialist	Rocket design and constructionPayload analysis	
Yvonne	Team Leader	Communication and coordinationRocket design and construction	

Figure 1: Team Organization Chart

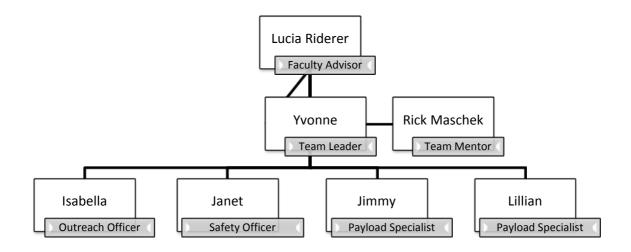


Figure 1 outlines the Rocket Owls team organization chart

5. NAR/TRA Sections

For launch assistance, mentoring, and review, the Rocket Owls will associate with the Rocketry Organization of California (ROC) (NAR Section #538, Tripoli Prefecture #48) and the Mojave Desert Advanced Rocket Society (MDARS) (Tripoli Prefecture #37).

Facilities/Equipment

1. Facilities and Equipment Resources

Wind Tunnel

The Citrus College Rocket Owls have access to a subsonic wind tunnel at the California Polytechnic State University, Pomona's (Cal Poly Pomona) School of Aeronautical Engineering. The wind tunnel is located in the Supersonic Wind Tunnel Laboratory in Building 13 with ancillary equipment located in a separate utility room. It is approximately 53' x 22' in overall size, with a test section of 28' x 40'. It has the ability to perform airfoil testing, data acquisition, and simulate speeds up to 190 mph.

Cal Poly Pomona Supersonic Wind Tunnel Laboratory Location: Building 13 Room 1229 Staff Contact: Dr. Don Edberg Availability: by appointment

Citrus College Machine Shop

The team has access to an on-campus supervised student engine shop. The shop has one lathe that can facilitate any material, a Bridgeport vertical mill, and several other pieces of heavy-machinery equipment.

Citrus College Machine Shop Location: TE Room 121 Staff Contact: Professor Dennis Korn Availability: 8:00am-10:00pm Monday-Thursday

Citrus College CNC Machine

The team has access to a newly installed CNC machine located in Citrus College's Physics laboratory room, PS 125. The team will use the CNC machine to cut wood and other project-related materials in a well-defined way.

Citrus College CNC Machine Location: PS Room 125 Staff Contact: Dr. Lucia Riderer Availability: 8:00am – 8:00pm Monday – Friday

Jet Propulsion Laboratory 3D Printers

The team will have access to the 3D printers located at NASA Jet Propulsion Laboratory (JPL) Library, the HUB Space. Available resources include Tinkerine DittoPRO and MakerBot Replicator II. JPL Library staff will be present when the equipment is being used by the team to ensure that safety rules are followed and the equipment is operated properly.

The HUB at the Beacon Information Commons

Location: JPL Building 111 Staff Contact: Marlon Hernandez

Availability: 8:00am – 4:00pm Monday – Friday

5:00pm – 7:00am Monday – Friday (After hours)

Citrus College Conference Room and Computer Lab

The college's Physical Science (PS) building conference room, equipped with computers, is an area dedicated to science and engineering projects. This room is available during school days, 7:00 am to 10:00 pm. The computers' hardware and software include:

- Eight Dell OptiPlex i5-3570 CPU (3.40 GHz Processor and 4.00 GB RAM)
- One Dell OptiPlex 760 Intel Core 2 Duo (2.93GHz Processor and 3.25 GB RAM)
- Microsoft Office 2010
- RockSim Pro 2 (with EngEdit Pro 2)
- VideoPoint Physics Fundamentals

The team also has access to three Dell 3000 series laptops with Intel i3 CPU processors. RockSim Pro 9 has been downloaded onto these laptops.

The Career Technology (CT) Computer Lab is available to the team for the use of Autodesk AutoCAD 2013.

Teleconferencing Equipment

Teleconferencing will be held in the PS building conference room at Citrus College. The team has all of the equipment needed to perform video teleconferencing with the NASA Student Launch Project Office:

- Broadband internet connection
- Dell OptiPlex 760 computer (Windows XP)
- Panasonic PT-FW300 projector
- Logitech Webcam Pro 900 USB camera
- ShoreTel 230 speakerphone

Required documentation and project updates will be uploaded to the team's website managed by Jimmy. Website maintenance will be performed on the college's computer lab and on students' personal computers by the team members.

Contact information for connectivity issues
Dr. Eric Rabitoy
erabitoy@citruscollege.edu

Friends of Amateur Rocketry Site

The Friends of Amateur Rocketry (FAR) site is a ten-acre static test and launch facility in the Mojave Desert; it is located under the R2508 controlled air space umbrella of Edwards Air Force Base, at the edge of a military supersonic corridor. The Federal Aviation Administration (FAA) waiver of the FAR site allows launching of rockets up to 9,208 lbf-s total impulse. Launch peak altitudes are permitted to 18,000 ft. from Monday through Friday, and 50,000 ft. on Saturday and Sunday [1].

The FAR site has pyrotechnic operators licensed by Office of the State Fire Marshal and the Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF) to help manufacture, store, set up, test, and launch rockets in a safe manner. The facility has a blockhouse, viewing bunkers, explosive magazines, firefighting equipment, propellant storage, static test stands, and launch rails. Other accommodations include: an assembly building, workshops, storage, sun shade, weather station, internet, electrical power, street lights (for night operations), non-potable water, restrooms, and campground.

The FAR site is also equipped with heavy equipment such as: all-terrain-forklifts, skip loaders, and boom cranes to help with loading, unloading, and setup. Additionally, the facility has a lathe, a mill, a drill press, a chop saw, a grinder, and a welding machine, for modification purposes. In order to ensure the safety of the people participating in events organized at the FAR location, the site offers first aid kits, an automatic defibrillator, oxygen tanks, and a helipad for emergency evacuations.

Friends of Amateur Rocketry Site Location: Mojave Desert Contact: http://friendsofamateurrocketry.org/ Availability: 1st and 3rd Saturdays of every month

Safety

1. Safety Plan

The Citrus College Rocket Owls value and heavily emphasize safety. The safety plan detailed in this section was created to ensure that all participants in activities performed and facilitated by the Rocket Owls team are safe at all times.

The Citrus College Rocket Owls safety officer, Janet, will ensure that the safety plan is followed and up to date. She will make sure that the team members, as well as the children participating in the outreach events, are safe during all activities conducted or facilitated by the Rocket Owls as part of the NASA Student Launch. The safety officer's responsibilities are:

- Certify that the safety plan corresponds with federal, state, and local laws.
- Update the team members of any safety concerns from the previous week.
- Inform the team members of expected safety concerns for the upcoming week at the team's weekly meeting.
- Ask team members to express their safety concerns during the weekly meetings.
- Train the team on proper use of Personal Protective Equipment (PPE).
- Ensure that all team members understand and sign the team safety contract (see Appendix D).
- Be aware of all hazardous chemicals and machinery accessed by team members and ascertain that all safety precautions are followed before and after usage.
- Conduct safety briefings before the usage of any new equipment and/or materials.
- Read and keep a Material Safety Data Sheet (MSDS) for each hazardous chemical used, and safeguard that information in a safety binder, along with safety checklists and protocols.
- Ensure that the safety binder is available to all team members at all times.
- Identify safety violations and eliminate the hazard appropriately.
- Have detailed knowledge of the TRA code for High-Powered Rocketry.
- Inform the team advisor, mentor, and members if the safety plan is violated by a team member.

MSDS information can be found in Appendix B and safety protocols in Appendix C

A hazard is a potential threat to life, health, property or environment. Assessment of a hazard is made by combining the severity of the consequence with the likelihood of occurrence in a matrix. Hazard analysis is the first step to assessing preliminary risk levels with the goal of controlling and/or eliminating the risk. Table 2 shows the risk matrix used to analyze the severity and probability of a hazard for the entire duration of the NAS

Table 2 : Risk Matrix								
Probability		Severity						
	1 Catastrophic	2 Critical	3 Marginal	4 Negligible				
A-Frequent	1A	2A	3A	4A				
B-Frequent	1B	2B	3B	4B				
C-Occasional	10	2C	3C	4C				
D-Remote	1D	2D	3D	4D				
E-Improbable	1E	2E	3E	4E				

The severity of a hazard ranges on a scale from negligible to catastrophic. The definitions of the words chosen to describe severity are provided in the following table.

Table 3: Severity Definitions			
Severity	Values	Definition	
	1	Permanent injury or loss of life; loss of facilities,	
Catastrophic		systems, or associated hardware; irreversible or	
		severe environmental damages that violate laws	
		and regulations	
	2	Severe injury; Major damages to facilities, system	
Critical		or associated hardware; reversible damages that	
		causes a violation of law or regulations	
	3	Moderate injury; moderate damages to facilities,	
Marginal		equipment, or systems; moderate environmental	
		damages that can be repaired, but don't cause a	
		violation of a law or regulation	
	4	Minor injury that can be treated immediately only	
Negligible		requiring first aid treatment; negligible	
		environmental damages that do not violate laws or	
		regulation	

Table 4 classifies risk into categories that represent their likelihood. Each hazard is assigned a probability of occurrence ranging from improbable (1) to frequent (5).

Table 4: Likelihood of Occurrence Definitions			
Description	Definitions		
A-Frequent	High likelihood to occur immediately or		
	expected to be experienced continuously		
B- Probably	Expected to occur frequently within time		
C- Occasional	Expected to occur occasionally within time		
D-Remote	Unlikely to occur frequently		
E- Improbable	Very unlikely to occur		

Table 5 demonstrates the facility hazards present in the construction of the rocket that pose sufficient risk to require mitigation procedures.

Table 5: Facility Hazard Analysis and Mitigation				
Facility	Hazard	Pre-RAC	Mitigation	Post-RAC
Citrus College	Lost or	4E	The lab will not be used for	4E
Computer Lab	corrupted		the physical aspects of the	
	data		project. Drinks or food will	
			not be allowed in the	
	Damaged		computer lab.	
	facilities			
Launch Sites	Bodily	2D	NAR High Powered Rocket	2E
1. Rocketry	harm		Safety Code will be followed	
Organization			at every launch. Before	
of California			launches, a certified team	
(ROC)			member will use a team	
2. Friends of			created checklist to assure	
Amateur			the rocket is safe to launch.	
Rocketry			The Range Safety Officer	
(FAR)			(RSO) will determine if the	
3. Mojave			rocket is safe to launch and	
Desert			the team will agree with	
Advanced			their assessment.	
Rocketry				
Society				
(MDARS)				
Cal Poly Pomona	Physical	4D	Trained personnel will	4E
Wind Tunnel	injury or		operate the wind tunnel. All	
	damage to		activities will be supervised	
	the rocket		by Cal Poly personnel.	

Citrus College	Physical	2D	Gloves, mask, goggles, and	2E
Machine Shop	injury, skin		closed toe shoes will be	
	or eye		worn. Team members will be	
	irritation		trained before usage of the	
			machine in the shop.	

MSDS is used to understand the potential hazards of the materials mentioned in Table 6 below. In addition, the preliminary risk levels are also provided in Table 6.

	Table 6: Material Hazards Analysis and Mitigations					
Materials	Hazard	Pre-RAC	Mitigation	Post-RAC		
Wood	Splinters and	4B	Gloves and protective masks will	4C		
	cuts		be worn at all times when handling			
			the material.			
Fiberglass	Skin and eye	4D	Gloves, masks, goggles, and lab	4E		
	irritation;		coats will be worn at all times			
	hazardous		when handling the material. Any			
	fume		skin that comes in contact with the			
	inhalation		material will be washed			
			immediately under running cold			
			water for at least 15 minutes.			
Acetone	Lung, eye, or	2C	Acetone will only be used in	3D		
	throat		designated ventilated areas and			
	irritation;		away from potential sources of			
	highly		ignition.			
	flammable					
Epoxy	Skin, eyes,	4C	Appropriate safety gloves and	4D		
	and		masks will be worn when working			
	respiratory		with the material.			
	irritation;					
	rashes and					
	allergic					
	reactions					

Black Powder	Burns, severe physical injury, and property damage	1E	Black powder will be handled solely by the team mentor.	2E
Solder	Burns, respiratory irritation	2B	Appropriate goggles, masks and protective clothing will be worn. Soldering equipment will be used only in well-ventilated areas.	3C
Paint	Respiratory irritation	3C	Protective masks will be worn. Painting will be done in well-ventilated areas.	4C
Batteries	Chemical burns, skin irritation	3C	Batteries will be stored in a cool and dry place and kept away from heat sources. Batteries will also be disconnected when not in use.	3D
Super glue	Eye and skin irritation	3B	Gloves, masks, and eye protection will be worn when handling the material.	3D

Table 7 below lists the equipment required in the construction of the launch vehicle that poses sufficient risk to require mitigation.

Table 7: Equipment Hazards Analysis and Mitigation					
Equipment	Hazards	Pre-RAC	Mitigation	Post-RAC	
Power tools	Physical injury	3B	Team members will be properly trained before usage of all the power tools before using them independently. Power tools will be used only in appropriate lab facilities.	3D	
Machinery	Bodily harm	1D	Team members will abide by all the safety rules that correspond to the machinery being used. Team members will not be allowed to work alone and/or under fatigue.	3E	
Rocket motor	Bodily harm, burns, property damages	2D	Team members certified by the Tripoli Rocketry Association will handle the motor. All personnel will be at the minimum required distance from the motor being tested and before ignition.	3E	

Table 8 demonstrates descriptions of hazards that may occur during the arrangement and launch of the rocket.

Table 8: Launch Vehicle Hazard Analysis and Mitigation				
Hazards	Pre-RAC	Mitigation	Post-RAC	
No deployment,	1D	Redundant altimeters and black powder	2E	
unwarranted or		charges will be used to secure		
delayed deployment		deployment. A safety checklist will be		
		made to confirm that the proper		
		electronics are installed and activated.		
Unstable flight	1D	Rocket simulation software will be used to	2E	
		stimulate the center of pressure before		
		launch.		
Injury during ground	2C	Team members will be at a required	2D	
or launch testing		distance from the launch vehicle when		
		conducting ground or launch testing.		
Failure to recover	1D	Rocket simulation software will be used to	1E	
rocket		ensure rocket stability. Rocket must pass		
		launch safety inspection. A GPS system		
		will be used.		
Catastrophic takeoff	1C	Only certified motors will use. The mentor	3E	
(CATO)		will oversee the installation of the motor.		

The safety guidelines listed below will be followed to ensure the safety of the participating students at the team's outreach events:

- Mechanical operations such as drilling and/or hammering will be done beforehand by the members
- Minors will be under the direct supervision of adults to ensure the child safety
- Potentially hazardous materials and equipment will be locked at all times to prevent access
- Written permission of the parent or guardian will be obtained before publication of photograph of the minors

• Proper authorities will be notified should a minor share information that could pose a threat to other or themselves

Table 9 lists potential hazards during the construction of the payload and their corresponding mitigations.

	Table 9: Payload Hazards and Mitigation					
Hazard	Pre-RAC	Mitigation	Post-RAC			
Cuts and/or	2D	Protective clothing	3E			
burns		will be worn while				
		constructing the				
		payload.				
Skin and eye	3B	Gloves, masks, and	3D			
irritation		goggles will be				
		worn while				
		constructing the				
		payload.				
Fume and/or	3C	Protective masks	4C			
particle		will be worn while				
inhalation		constructing the				
		payload.				

Table 10 lists the hazards that may occur during the outreach events hosted by the team and ways to respond to those potential hazards.

	Table 10: Outreach Hazard Analysis and Mitigation				
Material	Hazard	Mitigation	Treatment		
Razors	Cuts	Minors will not be allowed access to	Rinse and disinfect		
		razors. Only team members will use the	the cut, then cover		
		razors and only when it is appropriate.	the area with a sterile		
			bandage.		
Super glue	Skin and/or	Minors will not work on their project	Rinse the affected		
	eye damage	unsupervised. Appropriate measures will	area with warm,		
		be made to ensure the minors are using	soapy water to		
		super glue in a proper way.	remove all the		
			substance on the		
			skin. Seek immediate		
			medical attention for		
			eye exposure.		
Hot glue	Burns	Minors will not work on their projects	Rinse the affected		
		unsupervised. Minors will not be	areas with cool water		
		allowed access to hot glue guns.	and cover the burn		
			with a sterile, dry,		
			bandage.		
Rocket	Burns,	Certified team members will supervise	Rinse affected area		
motors	fires, and/or	assembly of rocket motors and rocket	under cool running		
	destruction	launches.	water and cover the		
	of property		burn with a sterile		
			bandage. In case of a		
			minor fire, use a fire		
			extinguisher to		
			subdue the flame.		

Wood	Splinters	Minors will use balsa wood when	Remove the splinter
	and cuts	constructing their projects to prevent	with tweezers and
		harmful splinters.	soak the affected
			area with soap and
			water.
Paint	Respiratory	Minors will not be allowed access to the	Immediate medical
	irritation	paint. Only team members will handle	attention will be
		the paint.	sought.
Small bits	Choking	Minors will not work on their project	Performance of CPR
		unsupervised.	by certified
			personnel will be
			done and immediate
			medical attention
			will be sought.

Table 11 list the hazards and the mitigations related to the environment and the dangers those hazards could cause to the team members as well as the success of the launch.

Table 11: Environment Hazard Analysis and Mitigation				
Hazards	Pre-RAC	Mitigation	Post-RAC	
Unstable weather conditions	3B	Confirm launch to be on a day with favorable conditions (no rain, extreme heat or wind).	4B	
Sunburn	4B	Apply sunscreen constantly when working in the sun.	4C	
Heat stroke and dehydration	2D	Work will be done under a shade area if possible. Appropriate clothing will be worn. Team members will drink plenty of water.	3E	

Wild animal	1D	Team members will be aware of	<mark>1E</mark>
encounters (snakes		their surrounding at all times	
and spiders)		when in an environment inhabited	
		by poisonous animals.	
		Appropriate apparel will be worn,	
		such as close-toed shoes and long	
		pants.	
Air space (aircraft	2C	Check the skies for any	3E
overhead)		helicopters, planes, drones, and	
		other aircraft. Wait until the air	
		space above is clear, if aircraft is	
		present.	

There are multiple risks to the success of the completion of this project. One of the risks the team must consider is one or more member(s) leaving before the competition has been completed. This is unlikely to occur given the extensive interviews conducted by the team advisor before member selection. In the event of this incident, his or her responsibilities will be distributed among the remaining team members. Weekly meetings will be conducted to keep all team members up to date on all aspects of the project so that taking over a lost team member's responsibility will not be overwhelming. The launch vehicle will be tested earlier than the required date to allow multiple test launches and time to repair the vehicle, in the event of unforeseen natural occurrence such as bad weather, fires, and earthquakes, along with construction malfunctions.

1.1 NAR/TRA Procedures

All team members are responsible for acknowledging and following the NAR High Power Rocketry Safety Code. Rick, the Rocket Owls team mentor has many years of experience in handling and constructing rockets and will inform the team members of any hazards and risk involved. The safety officer will work with the team mentor to enforce the required safety procedures. The mentor's responsibilities are as follows:

- Ensure compliance with the NAR High Power Rocketry Safety Code
- Assist in purchasing, transporting and handling of motors

- Oversee handling of hazardous material and operations
- Ensure the recovery system are installed properly
- Handling and wiring all ejection charge igniters
- Accompany the team to Huntsville, Alabama

Table 12 introduces a description of the team's compliances with the NAR Safety Code.

	Table 12: NAR/TRA Safety Code and C	Compliance
	NAR Code	Compliance
1	Certification: I will only fly high power rockets or	Only team members with
	possess high power rocket motors that are within the	the appropriate level of
	scope of my user certification and required	certification and the team
	licensing.	mentor, Rick, who has a
		Level 2 TRA certification,
		will be allowed to handle
		rocket motors.
2	Materials: I will use only lightweight materials such	All team members are
	as paper, wood, rubber, plastic, fiberglass, or when	responsible for using
	necessary ductile metal, for the construction of my	appropriate material on the
	rocket.	rocket.
3	Motors: I will use only certified,	Only rocket motors certified
	commercially-made rocket motors, and will not	by TRA/NAR will be
	tamper with these motors or use them for any	purchased and be handled
	purposes except those recommended by the	by TRA certificated
	manufacturer. I will not allow smoking, open flames,	members of the team.
	or heat sources within 25 feet of these motors.	Rocket motors will be
		stored in appropriate
		locations.
4	Ignition System: I will launch my rockets with an	The team leader and safety
	electrical launch system, and with electrical motor	officer are responsible for
	igniters that are installed in the motor only after my	ensuring that the integration
	rocket is at the launch pad or in a designated	at the launch site is

	prepping area. My launch system will have a safety	performed following the
	interlock that is in series with the launch switch that	TRA safety code.
	is not installed until my rocket is ready for launch,	
	and will use a launch switch that returns to the "off"	
	position when released. The function of onboard	
	energetics and firing circuits will be inhibited except	
	when my rocket is in the launching position.	
5	Misfires: If my rocket does not launch when I press	The Range Safety Officer
	the button of my electrical launch system, I will	(RSO) will have final say
	remove the launcher's safety interlock or disconnect	over all misfires that may
	its battery, and will wait 60 seconds after the last	occur at the launch site. The
	launch attempt before allowing anyone to approach	team members will follow
	the rocket in question.	all final ruling of the RSO.
6	Launch Safety: I will use a 5-second countdown	The rocket will be presented
	before launch. I will ensure that a means is available	to the RSO, who will
	to warn participants and spectators in the event of a	determine if the rocket is
	problem. I will ensure that no person is closer to the	safe to launch.
	launch pad than allowed by the accompanying	
	Minimum Distance Table. When arming onboard	
	energetics and firing circuits I will ensure that no	
	person is at the pad except safety personnel and	
	those required for arming and disarming operations.	
	I will check the stability of my rocket before flight	
	and will not fly it if it cannot be determined to be	
	stable. When conducting a simultaneous launch of	
	more than one high power rocket, I will observe the	
	additional requirements of NFPA 1127.	
7	Launcher: I will launch my rocket from a stable	All launches will occur in at
	device that provides rigid guidance until the rocket	the launch site(s) listed in
	has attained a speed that ensures a stable flight, and	Table 5 and under

that is pointed to within 20 degrees of vertical. If the appropriate launch wind speed exceeds 5 miles per hour, I will use a conditions Launches at sites launcher length that permits the rocket to attain a not listed in the proposal safe velocity before separation from the launcher. I will not be allowed. The RSO will determine if the will use a blast deflector to prevent the motor's exhaust from hitting the ground. I will ensure that rocket is safe to launch. dry grass is cleared around each launch pad in accordance with the accompanying Minimum Distance table, and will increase this distance by a factor of 1.5, clearing that area of all combustible material if the rocket motor being launched uses titanium sponge in the propellant. 51 **Size**: My rocket will not contain any combination of The team leader will be motors that total more than 40,960 N-sec (9208 responsible to ensure the pound-seconds) of total impulse. My rocket will not rocket follows these weigh more at liftoff than one-third of the certified constraints. average thrust of the high power rocket motor(s) intended to be ignited at launch. Flight Safety: I will not launch my rocket at targets, The RSO will have final say into clouds, near airplanes, nor on trajectories that regarding the rocket being take it directly over the heads of spectators or allowed to be launched. beyond the boundaries of the launch site, and will not put any flammable or explosive payload in my rocket. I will not launch my rockets if wind speeds exceed 20 miles per hour. I will comply with Federal Aviation Administration airspace regulations when flying, and will ensure that my rocket will not exceed any applicable altitude limit in effect at that launch site.

8

9

10	Launch Site: I will launch my rocket outdoors, in an	All launches will occur at
	open area where trees, power lines, occupied	the launch site(s) listed in
	buildings, and persons not involved in the launch do	Table 5, Launches at other
	not present a hazard, and that is at least as large on	launch sites beside those
	its smallest dimension as one-half of the maximum	listed in the proposal will
	altitude to which rockets are allowed to be flown at	not be allowed. The RSO
	that site or 1500 feet, whichever is greater, or 1000	will determine if the rocket
	feet for rockets with a combined total impulse of	is safe to launch.
	less than 160 N-sec, a total liftoff weight of less than	
	1500 grams, and a maximum expected altitude of	
	less than 610 meters (2000 feet).	
11	Launcher Location : My launcher will be 1500 feet	All launches will occur at
11	from any occupied building or from any public	the launch site(s) listed in
	highway on which traffic flow exceeds 10 vehicles	Table 5, Launches at other
	per hour, not including traffic flow related to the	launch sites beside those
	launch. It will also be no closer than the appropriate	listed in the proposal will
	Minimum Personnel Distance from the	not be allowed. The RSO
	accompanying table from any boundary of the	will determine if the rocket
	launch site.	is safe to launch.
12	Recovery System: I will use a recovery system such	The team leader and safety
	as a parachute in my rocket so that all parts of my	officer will ensure that the
	rocket return safely and undamaged and can be	recovery system adhere to
	flown again, and I will use only flame-resistant or	all of these requirements.
	fireproof recovery system wadding in my rocket.	
13	Recovery Safety: I will not attempt to recover my	The safety officer will
	rocket from power lines, tall trees, or other	ensure that the team
	dangerous locations, or fly it under conditions where	members follow this
	it is likely to recover in spectator areas or outside the	requirement.
	launch site, nor attempt to catch it as it approaches	
	the ground.	

Table 13 shows the minimum distance required to ensure the safety of participants and spectators during a rocket launch.

Table 13 : Minimum Distance for Launch Safety				
Installed Total Impulse (Newton- Seconds)	Equivalent High Power Motor Type	Minimum Diameter of Cleared Area (ft.)	Minimum Personnel Distance (ft.)	Minimum Personnel Distance (Complex Rocket) (ft.)
0 — 320.00	H or Smaller	50	100	200
320.01 — 640.00	I	50	100	200
640.01 — 1,280.00	J	50	100	200
1,280.01 — 2,560.00	K	75	200	300
2,560.01 — 5,120.00	L	100	300	500
5,120.01 — 10,240.00	M	125	500	1000
10,240.01 — 20,480.00	N	125	1000	1500
20,480.01 — 40,960.0	0	125	1500	2000

1.2 Hazard Recognition and Pre-Launch Briefing

Before any construction, test, and launches the team will have a safety meeting. At this meeting the safety officer will brief all team members of safety regulations. The briefing will consist of an MSDS safety overview, as well as a review of safety protocols described in the safety manual. Team members will also be briefed on the purpose of using new materials and/or equipment. If safety risks are observed at any time, the team members will take the required steps to mitigate the risks. In addition, the safety officer will be informed so that he can proceed to resolving the situation and educating the parties responsible for the incident, in order to prevent the same situation from happening again. Moreover, all team members are expected to keep up to date with the regulations as changes and revision are made to protocols and regulation within the safety manual. The team safety manual covers the following topics:

- Lab Safety
- Material Safety Procedures
- Safety Protocols for Equipment Operation
- MSDS information
- Launch Safety Procedure
- PPE Regulations

All MSDS forms for the proposal and the safety manual will be kept in binders located in the lab space where the rocket construction is being performed. Team members will refer to the binders before the handling of any hazardous material or chemicals. Furthermore, to avoid accidents, each team member must agree to and follow the rules outlined in Appendix #? and the regulations and protocols outlined in the safety manual.

Pre-launch Briefing

Before any launches the team will have a pre-launch briefing. The briefing will consist of an overview of the safety procedures and rules associated with the launch site. In order to ensure the proper assembly and engagement of all project components, the team will create a protocol checklist. The checklist will include the necessary steps needed to prepare the rocket for launch. Several of the TRA certified team members will inspect the rocket and check off the list before presenting the rocket to the RSO. Team members will be reminded that all RSO rules are final and anyone displaying inappropriate behavior will not be allowed to launch the rocket and/or leave the launch site.

1.3 Caution Statements

The Rocket Owls will include caution statements for all plans, procedures, and other working documents. The safety Officer will ensure that these documents are available during the construction of the launch vehicle to reduce potential risk. Potential hazards during the construction process will be identified. Team members are expected to read, understand, follow, and enforce precautions stated in the MSDS report for every material used during construction. The Safety Officer will refer to the appropriate MSDS for specific safety guidelines and will remind all team members of proper usage of any machinery and/or chemicals prior to their use. Team members will not be allowed to work under fatigue or by themselves. Team members will remain focused on the task at hand and will be aware of their surroundings at all times. Prior to construction, the safety officer will demonstrate the proper use of PPE. Team members will dress appropriately for the lab space, including removal of loose clothing and jewelry, tying back long hair, putting on necessary gloves, and wearing appropriate eye protective glasses, and respiratory masks. Team members will act appropriate in the lab space, including cleaning the work space of any obstacles, turning off machinery when finished, properly storing chemicals and cleaning the work place when finished.

1.4 Rocketry Laws and Regulations

The Rocket Owls will perform test launches leading up to the NASA Student Launch competition at one of the following sites: Rocketry Organization of California (ROC), Friends of Amateur Rocketry Inc. (FAR), or Mojave Desert Advanced Rocket Society (MDARS). The aforementioned facilities work with the FAA to meet the following guidelines listed in the Federal Aviation Regulations 14 CRR, Subchapter F, Part 101, Subpart C:

No person may operate an unmanned rocket:

- In a manner that creates a collision hazard with other aircraft
- In controlled airspace
- At an altitude where the horizontal visibility is less than five miles
- Into clouds
- Within five miles of the boundary of any airport
- Within 1.500 feet of any person or property that is not associated with the operations

• Between sunset and sunrise (Sec.6(c). Department of Transportation Act (49 U.S.C. 1655(c)) [2].

Any time an unmanned rocket is launched, the person operating it is required to contact the nearest FAA ATC facility 24-28 hours prior to the beginning of the operation to give them critical information. The facilities utilized by the team will provide the following information to the FAA ATC facility in compliance with this act:

- The name and address of the person designated as the event launch coordinator
- The estimated number of rockets operated
- The largest size rocket planned to be launched
- A maximum altitude which none of the rockets can surpass
- The location, date, time, and duration of the operation
- Any other pertinent information requested by the ATC facility [3].

The team mentor, Rick, will handle the low-explosives used by the team. Rick will closely follow the Code of Federal Regulation 27 Part 55: Commerce in Explosive as summarized below:

- Unless exempted by law, federal permits are needed to transport, ship, cause to be transported, or receive explosive material. Permit must keep complete and accurate records of the acquisitions and dispositions of explosive material
- Obtaining a Federal license or permit does not permit any one from violating any state or local ordinance
- No person shall store any explosive material in any matter that violates applicable regulations

The Rocket Owls understand the importance of fire prevention and will do the following in accordance with the NFPA 1127"Code for High Power Rocket Motors":

- Material that are explosive and flammable will not be stored in a detached garage or outside
- Explosive material will be stored in a noncombustible container
- All storage of explosive will be with accordance with federal, state, and local laws.
- Igniters will not be stored with explosives.

Title 19, California Code of Regulations, Chapter 6, Article 3, §981.5(b)(6) defines the Pyrotechnic Operator -- Rockets Third Class license, which is relevant for the launching of high-power rockets in California. The California State Fire Marshall has established regulations that identify at least one pyrotechnic operator license at each launch event. This license permits the licensee to handle, supervise, and discharge rockets which produce an audible or visual effect in connection with group entertainment

1.5 Rocket Motor Usage Plan

Motors will be purchased, stored, transported, and handled by the team mentor, Rick, who is a Level 2 certified member by the TRA. Energetic devices, including e-matches and black powder will also be handled by Rick. Only rocket motors certified by TRA/NAR will be purchased from online stores. Motors will not be purchased from on-site vendors.

Storage

Motors will stay disassembled and be kept in the original packaging until launch day. If stored in secondary container, the container will be clearly labeled (including the NFA diamond). Ammonium Perchlorate composite motors will be stored in a cool, dry place away from sources of heat, flame or sparks. Igniters will be stored separately from the motor.

Transport

The main ingredient in a high-power rocketry motor is solid Ammonium Perchlorate Composite Propellant (APCP). As of January 2010, APCP is no longer included in the list of explosive material in the U.S. Bureau of Alcohol, Tobacco, Firearm and Explosive (ATFE). The motor will not require a permit or licenses to be transported to the launch sites. Therefore, the team will transfer the motor in the original packaging via an air conditioned vehicle. At the launch site, the motor will be kept in a shaded area. The motor used for the NASA Student Launch will be shipped to the launch site. See section 1.4, for details in the handling and storage of other energetics.

Use of Rocket Motor

Only TRA/NAR certified members will handle the rocket motor. Before using a rocket motor, simulation of the flight using that specific motor will be done.

1.6 Safety Contract

The Rocket Owls consent to and will adhere to the relevant regulations to high-power rocketry and project team safety as stated in the Student Launch Handbook, distributed by NASA. The rules listed below are included in the safety contract.

- 1.6.1 Range safety inspections of each rocket before it is flown: each team shall comply with the determination of the safety inspection or may be removed from the program.
- 1.6.2 The RSO has final say on all rocket safety issues. Therefore, the RSO has the right to deny the launch of any rocket for safety reasons.
- 1.6.3 Any team that does not comply with the safety requirement will not be allowed to launch their rocket.

All members of the Rocket Owls are required to sign the contract in order to engage in any construction or participate in launches. The safety contract can be found in Appendix D.

Technical Design

1. Rocket and Payload Experiment

a. Vehicle Specification

Table 14 provides the general vehicle dimensions and illustrates the way the specifications of the launch vehicle are altered based on the motor utilized.

Table 14: General Vehicle Dimensions					
Aspect	Without Motor	With M1500G	With L2200G		
		Motor*	Motor*		
Length (in.)	128.00	128.00	128.00		
Diameter (in.)	6.08	6.08	6.08		
Length/Diameter Ratio	21.05	21.05	21.05		
Mass (lbs)	35.79	46.58	46.26		
C.P. (in from top)	101.60	101.60	101.60		
C.G. (in. from top)	79.80	87.93	87.75		
Stability (caliber)	3.63	2.28	2.31		
Average Thrust (N)	-	1449.23	2126.72		

^{*}See Section d below for additional motor information.

Figure 2: Proposed Rocket

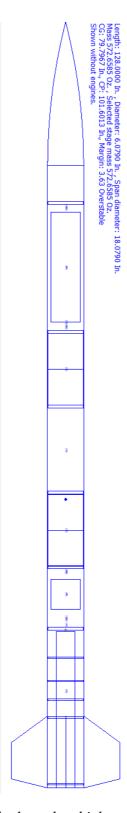


Figure 2 displays the launch vehicle proposed by the team.

Table 15 lists the main rocket components, the materials that will be used in their construction, and their corresponding manufacturing methods.

Table 15: Rocket Materials and Construction Methods					
Main Vehicle Material Justification		Justification	Construction		
Components			Method		
Nose cone	Fiberglass filament	Strong and durable	Commercially		
	wound		available		
Airframe	Blue tube 2.0	Rigid, stronger than	Cut with miter saw,		
		phenolic tubing	sand by hand,		
			fiberglass, bond		
			with epoxy		
Bulkheads	5-ply plywood, ½"	Strong, easy to cut,	CNC cut		
		sand and bond			
Centering rings	10-ply aircraft	Strong, easy to cut,	CNC cut		
	plywood, ¼"	sand and bond			
Fins	10-ply aircraft	Strong, stiff, resists	CNC cut		
	plywood, ¼"	flutter			
Parachutes	Ripstop nylon	Light-weight, tear	Commercially		
		resistant	available		
Shock cords	1" Tubular nylon	High-breaking	Commercially		
		strength	available		

b. Projected Altitude and Calculation

The outlined projected altitude is 5280 ft. AGL. Given the information found in Tables 14 and 15 and Figure 2, RockSim Pro 9 predicts an altitude of 5263.19 ft. with a M1500G motor. However, if the actual mass of the rocket ends up lower than predicted, a L2200G motor will be utilized. Over estimating the amount of epoxy to be used during construction and/or the mass of hardware pieces that vary among manufacturers could yield a lower mass for the launch vehicle than predicted. The M1500G motor provides a higher total impulse in comparison to the L2200G, making it more efficient for a rocket with higher mass to reach the projected altitude.

c. Parachute System Design

Table 16 describes the recovery system for the drogue and main parachutes, how and when they will deploy along with their corresponding launch vehicle descent rate.

	Table 16: Recovery System			
Altitude (AGL in	Means of	Parachute	Cd	Descent rate
ft.)	deployment			(ft/s)
5263 (Apogee)	Black powder	24" drogue	1.5	81.54
800	Black powder	144" main	2.2	11.17

All flight recovery events will be initiated by a redundant Missile Works RRC2+ altimeter system. At apogee, a black powder charge will separate the booster section of the rocket from the avionics bay and deploy the drogue parachute. The rocket will fall at a rate of 81.54 ft/s as two tethered sections. At 800 ft, a second black powder charge will separate the forward section of the avionics bay from the forward airframe and eject the main parachute. The rocket will descend at a rate of 11.17 ft/s as three tethered sections. Redundant black powder charges with a 1s delay will be used for both parachute deployments to ensure deployment. The proposed rocket will land with a kinetic energy of 69.38 ft-lb_f, as calculated using the descent rate of the rocket (11.17 ft/s) and the mass of the rocket without the motor (35.79 lbs). In the event of a mass decrease due to less use of epoxy or varying masses of hardware, the descent rate of the rocket will be adjusted as necessary to ensure that all components land with less than 75 ft-lb_f of kinetic energy.

d. Motor Brand and Designation

Specifications for K650RR Animal Works and K780R Aerotech motors [4] are summarized in Table 17 below, noting the higher average thrust in the Aerotech L2200G motor, but higher burn time of the Animal Works M1500G motor.

Table 17: Motor Specifications		
Manufacturer	Aerotech	Aerotech
Model	M1500G	L2200G
Diameter (mm)	75	75
Length (in.)	26.18	26.18
Launch weight (lbs.)	10.79	10.47
Empty weight (lbs.)	4.99	4.92
Total impulse (Ns)	5217.24	5104.14
Average thrust (N)	1449.23	2126.72
Maximum thrust (N)	1716.51	3101.77
Burn time (s)	3.60	2.40

The Aerotech M1500G will be utilized if the mass of the rocket stays as predicted or increases lightly. Figure 3 below shows the thrust curve for this motor.

Figure 3: Aerotech M1500G Thrust Curve

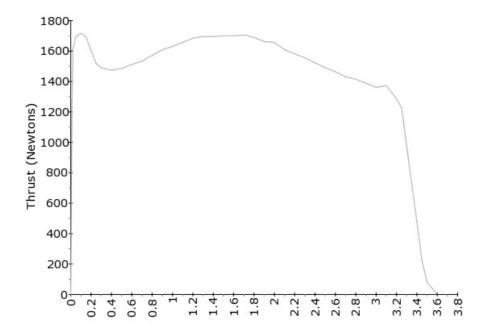


Figure 3 shows the thrust curve for the Aerotech M1500G. The thrust of this motor rapidly increases during the first 0.1s of flight. The motor then rapidly decreases thrust for approximately 0.2s then increases again until it reaches its maximum at approximately 1.6s and then slowly decreases until burn out at approximately 3.6s.

If the predicted mass of the launch vehicle decreases significantly, the Aerotech L2200G would be a more efficient motor. Figure 4 shows the thrust curve for this motor.

Figure 4: Aerotech L2299G Thrust Curve

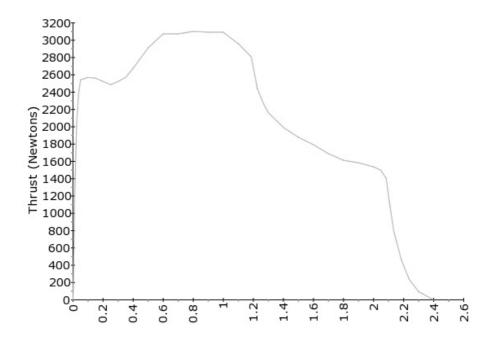


Figure 4 shows the thrust curve for the Aerotech L2200G. The thrust of this motor increases rapidly within the first 0.1s of flight and slightly dips for approximately 0.2s then increases until its maximum at approximately 0.6s and slowly decreases until it fully burns out at approximately 2.4s.

e. Payload Specification

The team will design and construct a container able to protect one or more objects of any size, shape and material. The container described in this section of the proposal was designed by the team under the assumption that those objects are solid samples collected on the surface of Mars and brought back to Earth. The modifications made to the proposed container in order to be able to protect liquid samples under the same assumption are described at the end of this section.

Main Dimensions

The team needs a material that is easy to use, affordable, and has a high impact strength. Therefore, the container will be made from polycarbonate knowing that

"One of the biggest advantages of polycarbonate is its impact strength" [5]. Polycarbonate is also affordable and easy to handle. The container will consist of a cylinder of 12" in height, with a 5" outer diameter and a 4.75" inner diameter. The container will have an interior chamber with a 4.25" otter diameter and a 4" inner diameter. These dimensions were selected to maximize workspace while making the container easy to transport.

Outer Shell

The outside of the container will have a layer of a 9% borated flexi-panel cemented on to it with plastic epoxy that has adhesive full strength of 3450 psi [6]. These two layers will then be lined with a 2mm coat of Line-X that will increase the tensile strength up to 6,600 psi and tear strength up to 780 lbs/in [7]. Refer to section 3.2 for a more detailed description of the impact capabilities of the outer shell.

Inner Chamber

The inside chamber of the container will have a manual rail system that will be used to secure, isolate and maneuver the objects up and down inside the inner chamber. There will be two silicon plates per section in order to allow a single object or multiple objects to be secure and restrict their ability to come into contact with each other or the container as shown in figure 8. The inner chamber will also be lined with aerogel to keep the temperature constant. According to NASA "Aerogels provide very effective insulation, because they are extremely porous and the pores are in the nanometer range. The nano pores aren't visible to the human eye. The existence of these pores makes the aerogel so adept at insulating." [8] Further detail on temperature change will be explained later in the proposal.

Table 18 contains all the individual parts that will be used in the construction of the container shown in Figure 5.

Table 18: Container Materials		
Materials	Specifications	Function
Polycarbonate	Cylinder: 12" in height with a 5" outer diameter, 4.75" inner diameter and an inner chamber 4.25" outer diameter and 4" inner diameter	Increases impact resistance
Borated flexi-panel	Sheet: 0.275" in thickness, 6.5" in width, and 11.8" in length	Shields against radiation
Aerogel insulator	Sheet: 0.19685" in thickness, 6.5" in width, and 11.8" in length	Insulates against changes in temperature
Silicone disks	Disks: 3.75" in diameter and 0.25" in thickness	Hold solid samples in place while inside the container
Pressure sensitive overlaminate	Film Thickness: 0.197"	Increase durability of the silicon disks
Compression springs	0.5" in length and 0.25" in diameter	Add shock resistance in between the silicone disks
Threaded metal rods	Everbilt zinc threaded rods 0.25" in diameter	Enable the silicon disks to move up and down inside the container
Nuts	UNC x 0.25" F and 0.09375" in height	Secure the laminated silicon plates together

Flat washer	0.025"in thickness, inner diameter 0.281",and outer diameter 0.625"	Increase the seal of the nuts and the silicon disks
Lock washer	410 SS and 0.25" in diameter	Secure the seal between the nuts and silicon disks
Threaded adaptor	5.5" in diameter	Allows a cap to be sealed onto the top of the container
Threaded cap	5.5" in diameter	Seals the container

Figures 5 - 10 introduce the proposed payload and its components from different views and with various levels of detail.

Figure 5: Proposed Container (Isometric View)

Figure 5 shows an isometric view of the assembled container.

Figure 6: Inner Rack (Isometric Exploded View)

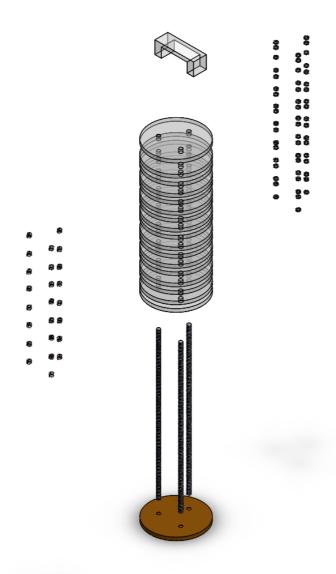


Figure 6 shows the inner rack in an isometric exploded view.

Figure 7: Inner Rack

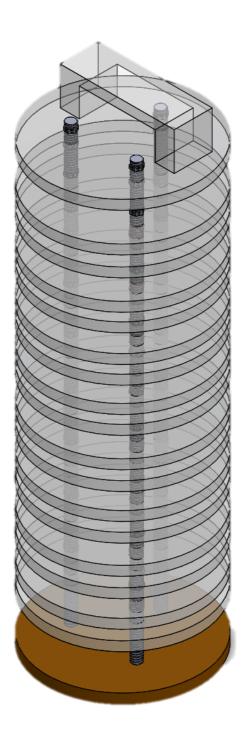


Figure 7 displays the container's inner rack proposed by the team.

Figure 8: Inner Rack (Cross Section View)

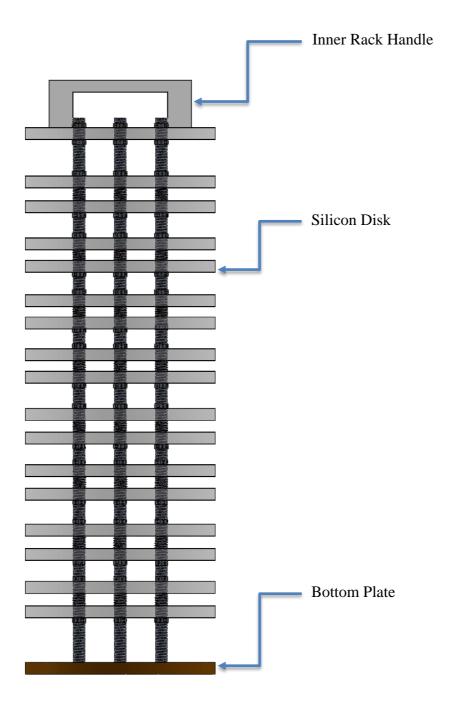


Figure 8 shows the inner rack of the container with the handle, bottom plate, and a silicon disk labeled.

Figure 9: Inner Rack Subsections (Close Up View)

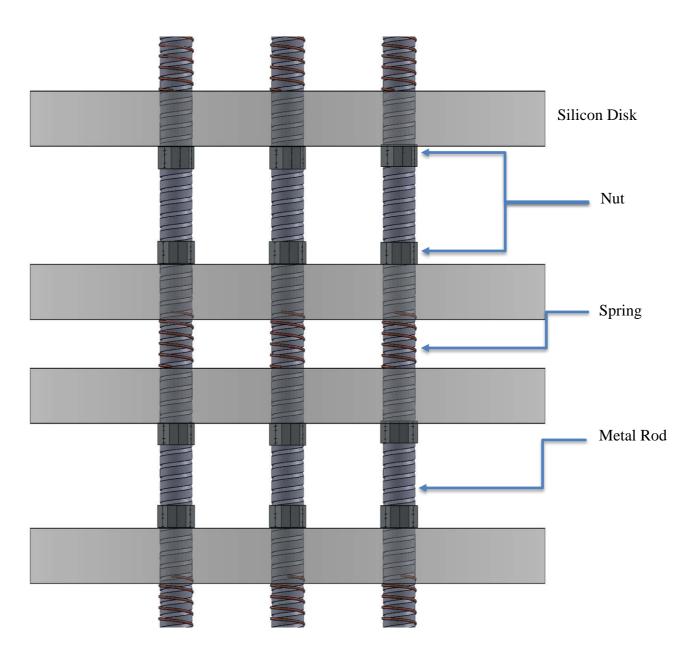


Figure 9 shows a close up view of the subsections within the inner rack of the container with major components labeled.

Figure 10: Proposed Container (Exploded View)

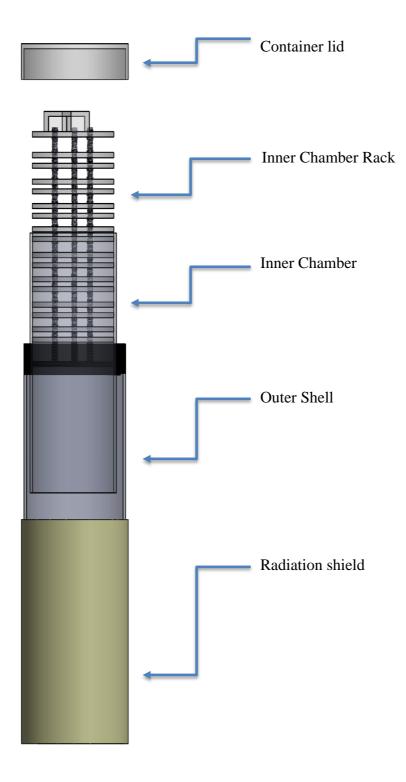


Figure 10 shows an exploded view of the complete container with all major parts labeled.

Container Considerations

The container has been designed to house and protect samples obtained from Mars and brought back to Earth. In order for the container to successfully protect the samples there are several concerns the team had to address. A sample from Mars will have to withstand any impact or shock that occurs during the flight and landing of the rocket. If the object is fragile, impact may cause damage to it. The sample must also be protected from the temperature change it will endure during the trip to Earth. Mars is significantly colder than Earth and this difference in temperature could cause issues such as phase changes in molecular bonds or chemical structures being altered because of the increase in heat. Mars also has a vastly different atmospheric pressure. As the sample travels to Earth the pressure will increase and if it is not properly protected the change in pressure could crush the sample. In the possible scenario that the sample combusts or a material near the sample container catches fire the container itself needs to be flame resistant. A fire in space can survive on less oxygen and burn for longer periods of time, so the container must be effective at protecting the sample from fire [9]. Samples from Mars may also need to be kept separate from each other to prevent cross contamination. Objects of the same material can be cross contaminated by each other which could potentially alter the results of any observations or experiments done with the material. To further prevent contamination and leakage the container must be hermitically sealed. Radiation is also a danger in space that the sample should be protected from. This is especially important in the case of obtaining an organic sample. Radiation may cause changes to its chemical composition or alter it molecularly, compromising the validity of any experiments on the sample.

Impact

Samples from space exploration may be sensitive to impact hence the container designed to safeguard those samples must be able to withstand a great amount of force. The total tensile strength of polycarbonate, borated flexi-panel, and Line-X will give the outer shell a combined tensile strength of about 10,000 psi. This level of strength will allow the container to withstand a significant amount of impact on Earth Considering that gravity on Mars is 0.375 % of Earth's gravity, the proposed container will be able to absorb a range of different impact strength on Mars due to

handling errors (i.e. dropping the container) as well as general sources of impact. The inner compartment of the proposed cylindrical container will house the samples. It will be made with clear polycarbonate and is 6.5" in height, with a 4.0" outer diameter and a 3.75" inner diameter. Polycarbonate is an impact resistant material with a tensile strength of 8702.26 -10500.73 psi [10]. The strength of the polycarbonate is a result of the covalent bonds in its molecular structure. In addition, the aromatic rings that compose this material also make it heat resistant and transparent. The container's inner compartment is secured to the main cylinder using Loctite Epoxy Plastic Bonder which was chosen because of its bonding properties. This plastic bonder works well with polycarbonate and several different plastics and rubber-like materials. Its compression shear strength on polycarbonate is 1713 psi, which will provide additional strength to hold the two materials together.

Shock

Samples from Mars may be sensitive to shock as well as impact Highly fragile materials and some reactive chemicals can be damaged or cause damage if they experience shock or vibrations. To account for this there is a rack in the inner cylinder made from three identical 6.5" Everbilt zinc threaded rods. The rods are 0.25" in diameter and are epoxied to a nylon disk at their ends. At the top of the rack is an additional-0.25" rod that serves as a handle. The rods run through eight silicone disks, each 3.75" in diameter and 0.25" in thickness. These disks are laminated with 0.197" PS Over laminate for additional strength. Additionally, three springs of 0.5" length and 0.825" diameter run through the threaded rods and lie between each pair of disks. These disks hold the samples securely in place and prevent any motion inside the cylinder. To insert the samples into the container, the rack is pulled out of the inner cylinder and the samples are placed in between the silicone disks. The disks are then pressed together, compressing the spring, and are held in place with aluminum nuts which are located on each side of the pair of silicone disks. The rack is inserted back into the container and the lid is then sealed. This design will allow the collected samples to move slightly, while still being held securely. As a result most of the shock felt on the objects housed in the container will be absorbed.

Temperature Change

Keeping the temperature of the collected samples constant is crucial to have accurate

data when examining the samples on Earth, because the team must consider that "Increasing the temperature increases reaction rates because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction."[11] To avoid unwanted reactions the inside of the proposed container will be lined with a layer of aerogel insulation in order to increase the container's capability to maintain a constant temperature. Aerogel has a very low thermal conductivity of 0.016-0.03 (W/mK) at 298.15K Furthermore, when considering the total mass of the container "aerogel has the lowest density of any know solid [at 0.31-12.49 lb-ft³]." [12]

Flammability

On Earth, small fires possess a teardrop shape caused by buoyant flow of cool air displacing the hot air within a flame, allowing the flame to obtain necessary oxygen to burn. However, in circumstances of low gravity buoyancy does not occur, allowing a flame to spread in different directions, potentially yielding a dome-like shape [13]. Though fire prevention is ideal during material retrieval, ideal situations cannot be assumed. Figure 5 displays the proposed container sealed with threaded caps that restrict the oxygen supply to a potential flame developed within the container. This way, if a fire were to develop within the container, it would burn until the oxygen supply within was depleted. Limited oxygen supply in combination with the self-extinguishing properties of polycarbonate [14], the material that will be used for fabrication of the proposed container, ensure a small and contained fire, should a combustion occur.

Isolation

Isolation of the collected samples from possible collisions with the surroundings or with each other inside the container's inner chamber is another significant criterion to be considered in order to accomplish the goal of the proposed container, as indicated in section e of this document. To ensure an effective isolation, the interior chamber of the proposed container will house a custom-built, adjustable threaded rail system comprised of 16 silicon disks able to move freely up and down the rails and separate the container into compartments, as needed. Each compartment will be enclosed by two silicon plates that will in-close the object restricting its movement and ability to

come in contact with other elements of the surrounding environment, including other samples or parts of the container. The two silicon plates will be held down by a combination of washers and nuts tighten on the rails. In addition, there will be three springs in between each set of two silicon plates that will increase the flexibility of the silicone disks allowing them to encompass the sample(s) in a more effective manner, refer to Figure 9 for more details.

Contamination

Contamination is a serious concern when samples are retrieved and transported from one location to another In order to avoid cross contamination of the samples, should more than one be retrieved, the seal between any two silicon plates on the rail system housed by the inner chamber of the proposed container will be extremely tight as a result of using a combination of nuts, flat washers and lock washers. Additionally, the lid used to hermetically seal the container t will provide protection of the samples from any contaminants that may be in the surrounding area. The proposed container must remain hermetically sealed until it has been placed into a controlled environment on Earth for data analysis.

Radiation

There are two types of radiation in space, ionizing radiation and non-ionizing radiation. Ionizing radiation is caused by magnetic fields and cosmic rays, among other things. "Space radiation consist mostly of ionizing radiation", this includes gamma rays, protons, and neutrons [15]. To protect the collected sample from radiation a 6.75" x 11.25" x 0.275" 9% borated flexi panel is adhered to the outside of the proposed container using Loctite Epoxy Plastic Bonder as shown in Figure 10. This material is lightweight and self-extinguishing; and will protect the sample from a possible external fire along with shielding the rest of the rocket if the sample were to combust. It is commonly used for radiation shielding in fusion test facilities and in high energy accelerators. The material has a high hydrogen and boron density which attenuates the radiation field. It also contains a hydrogenous additive which reduces the speed of the neutrons, contributing to the reduction of the radiation field. The flexi-panel's gamma resistance level is

Pressure

Mars has an atmosphere composed of 95% carbon dioxide, 3% nitrogen, and 1.6% argon. The atmospheric pressure in Mars is approximately 100 times thinner than that on Earth [17]. As the proposed container returns to Earth from Mars, it will experience an increase in pressure, from 0.11 psi to 14.70 psi, on its external walls [18]. Using the van der Waals equation for non-ideal behaving gases, and the fact that the atmosphere on Mars is mainly composed of carbon dioxide, the pressure inside the container while in Mars can be estimated [18]. On average, Mars reaches a low temperature of 120.15K[17], using this value in the van der Waals equation the pressure inside the container is expected to be 6.47 psi if the object were obtained during the lowest temperature in Mars. The average high temperature on Mars, 293.15K[17], was also used in the equation as a separate scenario in the case that the extraction occurred during Mars' warmer weather, this resulted in a pressure value of 15.87 psi inside the proposed contained. The pressure inside the proposed would increase as the rocket descends to Earth until the pressure value is around 14.69 psi. Opening the container on Mars to insert the unknown object(s) will equalize the container's internal pressure with the atmospheric pressure of Mars. As the container descends it will experience an increase in pressure on the walls of the proposed container. Polycarbonate has a tensile strength of 10,500 psi and a compressive strength of 1,150 psi [19]. Loctite Epoxy Plastic Bonder has a bond strength of 3,450 psi [20] and will be used to hold the components of the proposed container together. The 0.25" thick polycarbonate walls of the proposed container will be capable of withstanding the pressure that is exerted on it, due to its tensile strength, and help reduce the change in pressure that the sample experiences. Since the tensile strength of the polycarbonate and bonding agent are higher than the pressure force that is expected to occur within the proposed container, the container is expected to be durable enough to withstand the pressure change that will occur during the return flight.

Liquid containment

In order to accommodate safe storage of liquid sample(s) the proposed container will have a section on the outer rim of the inner chamber completely separated from the rest of the chamber, as shown in Figure 10 able to hold the sample. Because leakage should occur when the liquid undergoes active fluid motion, a nitrile rubber gasket

installed in the lid will be used to prevent any liquid from escaping. Nitrile rubber has ideal engineering properties and is a general-purpose sealing lip material [21]. A nitrile rubber gasket will hermitically close the proposed container by providing a tight enclosure between the cap and the container's rim. Additionally, the flexibility feature of the nitrile rubber gasket will also provide a tight filling of irregular gap between the cap and the lip of the proposed container.

In order to maintain the state of the liquid sample(s), the inner chamber of the proposed container must preserve its pressure and temperature. The pressure will be controlled by not allowing any air (gas) in or out. This will be achieved with the seal of the lid. The temperature of the liquid sample inside the container will be controlled by the aerogel insulator lining inside the liquid compartment.

f. Vehicle, Recovery System, and Payload Design Requirements

The Citrus College Rocket Owls have carefully assessed all requirements as specified by the NASA Student Launch Handbook and have verified that the proposed launch vehicle and payload meet those requirements.

Table 19 provides the specific requirements and pertaining resolutions for the launch vehicle.

Table 19: Launch V	ehicle Requirements
Requirement	Resolution
1.1. The vehicle shall deliver the science or	RockSim Pro 9 simulations and test flights
engineering payload to an apogee altitude of	will determine the appropriate motor to reach
5,280 feet above ground level (AGL).	the target altitude.
1.2. The vehicle shall carry one commercially	The official altitude will be recorded by one of
available, barometric altimeter for recording	the Missile Works RRC2+ altimeters.
the official altitude used in determining the	
altitude award winner.	
1.2.1. The official scoring altimeter shall	The Missile Works RRC2+ altimeters report
report the official competition altitude via a	the AGL altitude via a series of beeps, each
series of beeps to be checked after the	corresponding to a specific number.
competition flight.	

1.2.2. Teams may have additional altimeters	Only a redundant altimeter will be utilized
to control vehicle electronics and payload	for recovery.
experiment(s).	
1.2.3 At the Launch Readiness Review, a	NASA officials will have the official altimeter
NASA official will mark the altimeter that	available at the launch readiness review to be
will be used for the official scoring.	marked.
1.2.4. At the launch field, a NASA official	The Missile Works RRC2+ altimeters relay
will obtain the altitude by listening to the	the maximum altitude via audible beeps.
audible beeps reported by the official	
competition, marked altimeter.	
1.2.5. At the launch field, to aid in the	The official scoring altimeter will remain on
determination of the vehicle's apogee, all	at all times. All other audible electronics, if
audible electronics, except for the official	any, may be turned off.
altitude determining altimeter shall be capable	
of being turned off.	
1.2.6. The following circumstances will	See below
warrant a score of zero for the altitude portion	
of the competition.	
1.2.6.1. The official, marked altimeter is	The Missile Works RRC2+ will be housed
damaged and/or does not report an altitude via	securely inside the avionics bay to prevent
a series of beeps after the team's competition	damage.
flight.	
1.2.6.2. The team does not report to the NASA	The team will report to the NASA official
official designated to record the altitude with	after their launch and recovery.
their official, marked altimeter on the day of	
the launch.	
1.2.6.3. The altimeter reports an apogee	RockSim Pro 9 simulations along with test
altitude over 5,600 feet AGL.	launches will be conducted to ensure that the
	altitude does not surpass 5,600 feet AGL and
	that the desired altitude is reached.

1.2.6.4. The rocket is not flown at the	The team will pay utmost attention when
competition launch site.	following all specified requirements in
	constructing and testing the rocket so that the
	launch vehicle is cleared to launch during the
	competition.
1.3. All recovery electronics shall be powered	Commercially available 9V batteries shall
by commercially available batteries.	power all recovery electronics.
1.4. The launch vehicle shall be designed to be	Current RockSim Pro 9 simulations predict
recoverable and reusable.	that all rocket components will be recovered
	within close range from the launch pad. All
	launch vehicle components are designed to be
	reusable.
1.5. The launch vehicle shall have a maximum	The launch vehicle has two (2) independent
of four (4) independent sections.	sections.
1.6. The launch vehicle shall be limited to a	The launch vehicle only has one stage.
single stage.	
1.7. The launch vehicle shall be capable of	A compiled checklist will be utilized to ensure
being prepared for flight at the launch site	that flight preparation is efficient, thorough,
within 4 hours, from the time the Federal	and completed in less than two (2) hours.
Aviation Administration flight waiver opens.	These operations will be practiced during test
	launches.
1.8. The launch vehicle shall be capable of	All onboard electronics can remain in
remaining in the launch-ready configuration	launch-ready configuration for several hours
at the pad for a minimum of 1 hour without	due to their low power drawing properties.
losing the functionality of any critical	
on-board component.	
1.9. The launch vehicle shall be capable of	The launch vehicle will use a commercial,
being launched by a standard 12-volt firing	APCP motor that will ignite with a 12- volt
system.	direct current.

1.10. The launch vehicle shall require no	The launch vehicle will not use external
external circuitry or special ground support	circuitry or special ground support to initiate
equipment to initiate launch (other than what	launch.
is provided by Range Services).	
1.11. The launch vehicle shall use	The team will utilize a certified L2200G or
commercially available solid motor	M1500G motor from Aerotech
propulsion system using ammonium	
perchlorate composite propellant (APCP)	
which is approved and certified by the	
National Association of Rocketry (NAR),	
Tripoli Rocketry Association (TRA), and/or	
the Canadian Association of Rocketry (CAR).	
1.11.1. Final motor choices must be made by	The final motor choice will be stated in the
the Critical Design Review (CDR).	CDR.
1.11.2. Any motor changes after CDR must be	The team will only make a motor change
approved by the NASA Range Safety Officer	request if it increases the safety margin
(RSO) and will only be approved if the change	significantly.
is for the sole purpose of increasing the safety	
margin.	
1.11. Pressure vessels on the vehicle shall be	Pressure vessels will not be used.
approved by the RSO and shall meet the	
following criteria:	
1.12.1. The minimum factor of safety (Burst	Pressure vessels will not be used.
of Ultimate Pressure versus Max Expected	
Operating Pressure) shall be 4:1 with	
supporting design documentation included in	
all milestone reviews.	
1.12.2. The low-cycle fatigue life shall be a	Pressure vessels will not be used.
minimum of 4:1.	
1.12.3. Each pressure vehicle shall include a	Pressure vessels will not be used.
pressure relief valve that sees the full pressure	
of the tank.	

1.12.4. Full pedigree of the tank shall be described, including the application for which the tank was designed, and the history of the tank, including number of pressure cycles put on the tank, by whom, and when. 1.13. The total impulse provided by a Middle and/or High School launch vehicle shall not exceed 5,120 Newton-seconds (L-class). 1.14. The launch vehicle shall have a minimum static stability margin of 2.0 at the point of rail exit. 1.15. The launch vehicle shall accelerate to a minimum velocity of 52 fps at rail exit. 1.16. All teams shall successfully launch and recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. Pressure vessels will not be used. The launch vehicle is part of a College team. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR. The team will launch and recover the full-scale hadden will have a redundant commercially available altimeter system. The subscale model will have a redundant commercially available altimeter yestem. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final fligh		
the tank was designed, and the history of the tank, including number of pressure cycles put on the tank, by whom, and when. 1.13. The total impulse provided by a Middle and/or High School launch vehicle shall not exceed 5,120 Newton-seconds (L-class). 1.14. The launch vehicle shall have a minimum static stability margin of 2.0 at the point of rail exit. 1.15. The launch vehicle shall accelerate to a minimum velocity of 52 fps at rail exit. 1.16. All teams shall successfully launch and recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown on the launch day. The launch vehicle is part of a College team. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will accelerate to a velocity of 71.7 fps at rail exit. The launch vehicle will accelerate to a velocity of 71.7 fps at rail exit. The launch vehicle will accelerate to a velocity of 71.7 fps at rail exit. The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR. The team will launch and recover will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5'' diameter) rocket successfully prior to FRR in its final flight configuration The team will sunch and recover the full-scale (4.5'' diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	1.12.4. Full pedigree of the tank shall be	Pressure vessels will not be used.
tank, including number of pressure cycles put on the tank, by whom, and when. 1.13. The total impulse provided by a Middle and/or High School launch vehicle shall not exceed 5,120 Newton-seconds (L-class). 1.14. The launch vehicle shall have a minimum static stability margin of 2.0 at the point of rail exit. 1.15. The launch vehicle shall accelerate to a minimum velocity of 52 fps at rail exit. 1.16. All teams shall successfully launch and recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. The launch vehicle is part of a College team. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The tam will launch and recover a 2/3-scale model of the full-scale model of the full-scale model of the full-scale rocket prior to CDR. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration of the lull-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration. The vehicle and recovery systems will be	described, including the application for which	
on the tank, by whom, and when. 1.13. The total impulse provided by a Middle and/or High School launch vehicle shall not exceed 5,120 Newton-seconds (L-class). 1.14. The launch vehicle shall have a minimum static stability margin of 2.0 at the point of rail exit. 1.15. The launch vehicle shall accelerate to a minimum velocity of 52 fps at rail exit. 1.16. All teams shall successfully launch and recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will accelerate to a velocity of 71.7 fps at rail exit. The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR. The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5° diameter) rocket successfully prior to FRR in its final flight configuration The team will launch and recover the full-scale (4.5° diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	the tank was designed, and the history of the	
1.13. The total impulse provided by a Middle and/or High School launch vehicle shall not exceed 5,120 Newton-seconds (L-class). 1.14. The launch vehicle shall have a minimum static stability margin of 2.0 at the point of rail exit. 1.15. The launch vehicle shall accelerate to a minimum velocity of 52 fps at rail exit. 1.16. All teams shall successfully launch and recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16. All teams shall successfully launch and recover a possible to the full-scale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. The launch vehicle is part of a College team. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will accelerate to a velocity of 71.7 fps at rail exit. The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR. The subscale model will have a redundant commercially available altimeter system. The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The team will full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	tank, including number of pressure cycles put	
and/or High School launch vehicle shall not exceed 5,120 Newton-seconds (L-class). 1.14. The launch vehicle shall have a minimum static stability margin of 2.0 at the point of rail exit. 1.15. The launch vehicle shall accelerate to a minimum velocity of 52 fps at rail exit. 1.16. All teams shall successfully launch and recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration the launch day. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will accelerate to a velocity of 71.7 fps at rail exit. The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR. The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration the launch day. The vehicle and recovery systems will be	on the tank, by whom, and when.	
exceed 5,120 Newton-seconds (L-class). 1.14. The launch vehicle shall have a minimum static stability margin of 2.0 at the point of rail exit. 1.15. The launch vehicle shall accelerate to a minimum velocity of 52 fps at rail exit. 1.16. All teams shall successfully launch and recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will accelerate to a velocity of 71.7 fps at rail exit. The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR. The team will launch and remodel will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	1.13. The total impulse provided by a Middle	The launch vehicle is part of a College team.
1.14. The launch vehicle shall have a minimum static stability margin of 2.0 at the point of rail exit. 1.15. The launch vehicle shall accelerate to a minimum velocity of 52 fps at rail exit. 1.16. All teams shall successfully launch and recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will have a 2.28 stability margin with the Aerotech M1500G at the point of rail exit. The launch vehicle will accelerate to a velocity of 71.7 fps at rail exit. The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR. The subscale model of the full-scale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The team will full for the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	and/or High School launch vehicle shall not	
minimum static stability margin of 2.0 at the point of rail exit. 1.15. The launch vehicle shall accelerate to a minimum velocity of 52 fps at rail exit. 1.16. All teams shall successfully launch and recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. The vehicle and recovery system shall accelerate to a velocity of 71.7 fps at rail exit. The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR. The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	exceed 5,120 Newton-seconds (L-class).	
point of rail exit. 1.15. The launch vehicle shall accelerate to a minimum velocity of 52 fps at rail exit. 1.16. All teams shall successfully launch and recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. The launch vehicle will accelerate to a velocity of 71.7 fps at rail exit. The launch vehicle will accelerate to a velocity of 71.7 fps at rail exit. The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR. The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	1.14. The launch vehicle shall have a	The launch vehicle will have a 2.28 stability
1.15. The launch vehicle shall accelerate to a minimum velocity of 52 fps at rail exit. 1.16. All teams shall successfully launch and recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. The launch vehicle will accelerate to a velocity of 71.7 fps at rail exit. The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR. The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The team will aunch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	minimum static stability margin of 2.0 at the	margin with the Aerotech M1500G at the
minimum velocity of 52 fps at rail exit. 1.16. All teams shall successfully launch and recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. velocity of 71.7 fps at rail exit. The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR. The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	point of rail exit.	point of rail exit.
1.16. All teams shall successfully launch and recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR. The subscale model of the full-scale rocket prior to CDR. The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR. The team will launch and recover a 2/3-scale model of the full-scale rocket prior to CDR.	1.15. The launch vehicle shall accelerate to a	The launch vehicle will accelerate to a
recover a subscale model of their full-scale rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. model of the full-scale rocket prior to CDR. The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5° diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	minimum velocity of 52 fps at rail exit.	velocity of 71.7 fps at rail exit.
rocket prior to CDR. 1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	1.16. All teams shall successfully launch and	The team will launch and recover a 2/3-scale
1.16.1. The subscale model should resemble and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. 1.17.1. The vehicle and recovery system shall The vehicle and recovery systems will be	recover a subscale model of their full-scale	model of the full-scale rocket prior to CDR.
and perform as similarly as possible to the full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. 1.17.1. The vehicle and recovery system shall The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5'' diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	rocket prior to CDR.	
full-scale model, however, the full-scale shall not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. 1.17.1. The vehicle and recovery system shall The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	1.16.1. The subscale model should resemble	
not be used as the subscale model. 1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. 1.17.1. The vehicle and recovery system shall The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	and perform as similarly as possible to the	
1.16.2. The subscale model shall carry an altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. 1.17.1. The vehicle and recovery system shall The subscale model will have a redundant commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	full-scale model, however, the full-scale shall	
altimeter capable of reporting the model's apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. 1.17.1. The vehicle and recovery system shall commercially available altimeter system. Commercially available altimeter system. The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	not be used as the subscale model.	
apogee altitude. 1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. 1.17.1. The vehicle and recovery system shall The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The team will launch and recover successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	1.16.2. The subscale model shall carry an	The subscale model will have a redundant
1.17. All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. 1.17.1. The vehicle and recovery system shall The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The team will launch and recover the full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	altimeter capable of reporting the model's	commercially available altimeter system.
recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. 1.17.1. The vehicle and recovery system shall full-scale (4.5" diameter) rocket successfully prior to FRR in its final flight configuration The vehicle and recovery systems will be	apogee altitude.	
its final flight configuration. The rocket flown at FRR must be the same rocket to be flown on the launch day. 1.17.1. The vehicle and recovery system shall The vehicle and recovery systems will be	1.17. All teams shall successfully launch and	The team will launch and recover the
at FRR must be the same rocket to be flown on the launch day. 1.17.1. The vehicle and recovery system shall The vehicle and recovery systems will be	recover their full-scale rocket prior to FRR in	full-scale (4.5" diameter) rocket successfully
the launch day. 1.17.1. The vehicle and recovery system shall The vehicle and recovery systems will be	its final flight configuration. The rocket flown	prior to FRR in its final flight configuration
1.17.1. The vehicle and recovery system shall The vehicle and recovery systems will be	at FRR must be the same rocket to be flown on	
	the launch day.	
function as designed. constructed according to the designs.	1.17.1. The vehicle and recovery system shall	The vehicle and recovery systems will be
	function as designed.	constructed according to the designs.

1.17.2. The payload does not have to be flown	See below
during the full-scale test flight. The following	
requirements still apply:	
1.17.2.1. If the payload is not flown, mass	A mock payload matching the mass of the true
simulators shall be used to simulate the	payload will fly with the launch vehicle.
payload mass.	
1.17.2.1.1. The mass simulators shall be	The full-scale rocket will be flown with a
located in the same approximate location on	mock payload matching the mass and location
the rocket as the missing payload mass.	of the actual payload.
1.17.3. If the payload changes the external	The payload experiment will be active
surfaces of the rocket (such as with camera	throughout the full scale flight
housings or external probes) or manages the	
total energy of the vehicle, those systems shall	
be active during the full-scale demonstration	
flight.	
1.17.4. The full-scale motor does not have to	The full-scale motor will be flown during the
be flown during the full-scale test flight.	full-scale test flight.
However, it is recommended that the	
full-scale motor to be used to demonstrate full	
flight readiness and altitude verification.	
1.17.5. The vehicle shall be flown in its fully	The vehicle will be flown in its fully ballasted
ballasted configuration during the full-scale	configuration during the full-scale test.
test.	
1.17.6. After successfully completing the	The launch vehicle will not be modified after
full-scale demonstration flight, the launch	the full-scale demonstration flight with the
vehicle or any of its components shall not be	concurrence of the NASA RSO.
modified without the concurrence of the	
NASA Range Safety Officer.	
1.17.7. Full scale flights must be completed	Full scale flights of the launch vehicle will be
by the start of FRRs (March 6th, 2016).	completed by the start of FRRs.

1.18. Any structural protuberance on the	The launch vehicle will not have structural
rocket shall be located aft of the burnout	protuberances.
center of gravity.	
1.19. Vehicle prohibitions	See below
1.19.1. The launch vehicle shall not use	The launch vehicle will not use forward
forward canards.	canards.
1.19.2. The launch vehicle shall not use	Forward firing motors will not be utilized by
forward firing motors.	the launch vehicle.
1.19.3. The launch vehicle shall not utilize	Motors that expel titanium sponges are not
motors that expel titanium sponges.	utilized by the launch vehicle.
1.19.4. The launch vehicle shall not utilize	Commercially available solid APCP motors
hybrid motors.	are utilized for the launch vehicle.
1.19.5. The launch vehicle shall not utilize a	A single motor is used for the launch vehicle.
cluster of motors.	
1.19.6. The launch vehicle shall not utilize	The launch vehicle will use a threaded
friction fitting for motors.	metallic flange with a fitting threaded cap for
	motor retention.
1.19.7. The launch vehicle shall not exceed	The launch vehicle will not exceed Mach 1 at
Mach 1 at any point during flight.	any point during flight.
1.19.8. Vehicle ballast shall not exceed 10%	Launch vehicle ballast will not exceed 10%
of the total weight of the rocket.	of its total weight.

Table 20 lists the requirements and resolution for the recovery system.

Table 20: Recovery System Requirements		
Requirement	Resolution	
2.1. The launch vehicle shall stage the	Missile Works RRC2+ altimeters will eject the	
deployment of its recovery devices, where a	drogue parachute at apogee, and the main	
drogue parachute is deployed at apogee and	parachute at 800 ft.	
a main parachute is deployed at a much		
lower altitude.		

2.2. Each team must perform a successful	Successful ground ejection tests will be	
ground ejection test for both the drogue and	conducted prior to all initial subscale and full	
main parachutes. This must be done prior to	scale launches.	
the initial subscale and full scale launches.		
2.3. At landing, each independent section of	The team will theoretically calculate and utilize	
the launch vehicle shall have a maximum	test-flight data to calculate the kinetic energy of	
kinetic energy of 75 ft-lbf.	landing for each rocket section. The combined	
	descent rate of the rocket and untethered	
	payload experiment will be adjusted as	
	necessary to ensure that all components land	
	with less than 75 ft-lbf of kinetic energy.	
2.4. The recovery system electrical circuits	Each altimeter will be independent of any	
shall be completely independent of any	payload electrical circuits, including other	
payload electrical circuits.	recovery altimeters.	
2.5 Th		
2.5. The recovery system shall contain	The recovery system will contain redundant	
redundant, commercially available	Missile Works RRC2+ altimeters to deploy the	
altimeters. The term "altimeters" includes	parachutes.	
both simple altimeters and more		
sophisticated flight computers.		
2.6. Motor ejection is not a permissible form	Motor ejection will not be utilized.	
of primary or secondary deployment.		
2.7. Each altimeter shall be armed by a	All RRC2+ altimeters will have separate	
dedicated arming switch that is accessible	external arming switches accessible when the	
from the exterior of the rocket airframe	rocket is in launch position.	
when the rocket is in the launch		
configuration on the launch pad.		
2.8. Each altimeter shall have a dedicated	Each altimeter will have a dedicated 9V power	
power supply.	supply.	
2.9. Each arming switch shall be capable of	The arming switches will require a key to lock	
being locked in the ON position for launch.	them in the ON position.	

2.10. Removable shear pins shall be used	All parachutes compartments will be attached
for both the main parachute compartment	with #2 nylon shear pins.
and the drogue parachute compartment.	with 112 hyron shear pins.
	The lounch vehicle will have true (2) CDS
2.11. An electronic tracking device shall be	The launch vehicle will have two (2) GPS
installed in the launch vehicle and shall	tracking devices.
transmit the position of the tethered vehicle	
or any independent section to a ground	
receiver.	
2.11.1. Any rocket section, or payload	All payload components will be inside of the
component, which lands untethered to the	rocket. All rocket sections will be tethered
launch vehicle, shall also carry an active	together.
electronic tracking device.	
2.11.2. The electronic tracking device shall	The GPS tracking device will be fully
be fully functional during the official flight	functional at the launch site competition.
on launch day.	
2.12. The recovery system electronics shall	The recovery system electronics will be
not be adversely affected by any other	independently wired.
on-board electronic devices during flight	
(from launch until landing).	
2.12.1. The recovery system altimeters shall	The recovery system altimeters will be
be physically located in a separate	physically separated from the GPS transmitter
compartment within the vehicle from any	by being installed in their own avionics bay.
other radio frequency transmitting device	
and/or magnetic wave producing device.	
2.12.2. The recovery system electronics	The recovery system electronics will be
shall be shielded from all onboard	shielded from the GPS transmission and from
transmitting devices, to avoid inadvertent	any other onboard devices that may adversely
excitation of the recovery system	affect their proper operation.
electronics.	

2.12.3. The recovery system electronics	Equipment yielding magnetic waves will not be
shall be shielded from all onboard devices	utilized.
which may generate magnetic waves (such	
as generators, solenoid valves, and Tesla	
coils) to avoid inadvertent excitation of the	
recovery system.	
2.12.4. The recovery system electronics	The recovery system electronics will be secured
shall be shielded from any other onboard	inside the avionics bay without interference of
devices which may adversely affect the	other electronics.
proper operation of the recovery system	
electronics.	

Table 21 below lists the requirements and resolutions for the experiment.

Table 21: Fragile Material Protection		
Requirement	Resolution	
3.1.1. Each team shall choose one design experiment option from the following list.	The team has chosen experiment three (3): fragile material protection.	
3.1.2. Additional experiments (limit of 1) are encouraged, and may be flown, but they will not contribute to scoring.	The team will not have additional experiments.	
3.1.3. If the team chooses to fly additional experiments, they shall provide the appropriated documentation in all design reports so experiments may be review for flight safety.		

3.4.1. Teams shall design a container capable of protecting an object of an unknown material and of unknown size and shape.3.4.1.1. There may be multiple of the object, but all copies shall be exact replicas.	The proposed contained will be adjustable to accommodate multiple shapes, sizes, and quantities.
3.4.1.2. The object(s) shall survive throughout the entirety of the flight.	The team will design and construct a container that will protect the unknown object(s) throughout the entire flight.
3.4.1.3. Teams shall be given the object(s) at the team check in table on launch day.	The team will test the protection caliber of the proposed container with other fragile materials.
3.2.1.4. Teams may not add supplemental material to the protection system after receiving the object(s). Once the object(s) have been provided, they must be sealed within their container until after launch.	Supplemental material for protection will not be added after receiving the object. The container will have a threaded cap closure seal that will remain closed until after launch.
 3.4.1.5. The provided object can be any size and shape, but will be able to fit inside an imaginary cylinder 3.5" in diameter, and 6" in height. 3.5.1.6. The object(s) shall have a maximum combined weight of approximately 4 ounces. 	The proposed contained will be able to accommodate a volume of 57.70 in ³ and withstand a minimum of 4 ounces for the unknown object(s).

g. Technical Challenges and Solutions

Table 22 describes the technical challenges and solutions for the fragile material protection experiment.

Table 22: Technical Challenges in Fragile Material Experiment and Development		
Challenge	Resolution	
The object's quantity is unknown.	The proposed contained will have adjustable platforms to accommodate 1-8 object(s) of	
The object's size and shape are unknown.	the same size and shape.	
The proposed container must remain stable	The proposed container will be fixed inside	
inside the launch vehicle.	the launch vehicle. Filler foam will fill the	
	space between the outside of the container	
	and the inside of the rocket to ensure the	
	stability of the container.	
The object(s) sensitivity is unknown.	The proposed container shields the object(s)	
	from temperature and pressure change,	
	collisions, radioactivity, flammability,	
	leakage, and shock.	
The object(s) may be in a liquid state.	The proposed container can hold liquids in a	
	separate leak-proof compartment between	
	the outer and inner chamber of the container.	
The proposed container must be structurally	The proposed container will be constructed	
strong and durable.	from polycarbonate to ensure durability.	

Educational Engagement

The educational engagement activities that the Citrus College Rocket Owls plan to conduct include year-long programs, booth presentations, and weekend workshops targeting students in grades 5-8. In addition, the team will organize and conduct several other Science, Technology, Engineering and Mathematics (STEM) activities designed to increase interest of students from local colleges and school districts in STEM fields

A detailed description of the major educational engagement activities planned by the team is

Year-long Programs

introduced below.

Junior Rocket Owls Program

The Rocket Owls are looking forward to mentoring the third generation of Junior Rocket Owls. The Junior Rocket Owls is a year-long program designed to spark and enhance the interest of 5th grade students enrolled in the Glendora Unified School District (GUSD) in STEM fields through multiple rocketry and other STEM- related experiences. The Citrus Rocket Owls will act as mentors to a number of 30 students during the monthly weekend workshops that will take place at Citrus College. The 5th grade GUSD students will work in teams under the facilitative leadership and guidance of the Rocket Owls to design, build and launch simple model rockets, as well as apply physics principles and learn how to use rocket simulation computer software to predict and analyze the performance of their model rockets. Furthermore, the Junior Rocket Owls will present what they have learned in this year-long program at a Symposium that will take place at Citrus College at the end of the academic year. The Junior Rocket Owls Symposium will showcase the professional posters that the 5th graders will design and create to display their methods, results and analysis through the scientific method.

Detailed information about this program can be found on the Junior Rocket Owls website at: http://www.citruscollege.edu/academics/owls/jr/.

It's Rocket Math!

It's Rocket Math! is an outreach program consisting of activities planned and facilitated by the Citrus College Rocket Owls using NASA educational resources [22]. Middle school students enrolled in the 7th grade GUSD GATE program will be provided the opportunity to participate in the program and develop skills in mathematics applications to rocketry, along with hands-on rocketry, science and technology skills.

The outreach activities include building air rockets, and using sighting tubes, angle measurements, and tangent tables to determine the altitude of the air rockets; building wind tunnels to test the air rockets; designing and building parachutes of different surface areas, then testing them to analyze the effect of a parachute's surface area on the rocket's time in flight; building and launching model rockets, analyzing their flights and comparing them with the mathematical models created beforehand; and preparing professional posters and presenting them at the end-of-the-program symposium organized at Citrus College.

Booth Presentations

By hosting informational/activity booths at local events, including the Azusa 8th Grade Majors Fair, Claremont-Summer Elementary School Science Fair, and Citrus College Physics Festival, the Rocket Owls will share their passion and knowledge in rocketry and other STEM fields with the community. Booth presentations provide opportunities for local members and students to ask the Rocket Owls questions pertaining to rocketry, NASA and its educational programs, as well as each team member's experience in STEM.

The booths will also provide activities tailored to the participants, along with multiple handouts explaining rocketry principles and STEM topics. Additionally, the Rocket Owls will take advantage of these events to network with the local community, so that the team may be introduced to future educational engagement and fundraising opportunities.

Weekend Workshops

The Rocket Owls plan to organize and facilitate weekend workshops where participants will work in small groups to conduct experiments related to rocketry with the goal of introducing K-8 students enrolled local school districts to new ways of exploring science and mathematics, typically not seen in regular classroom environments.

All workshops will begin with a detailed presentation on the importance of safety procedures when building and launching a rocket, followed by an interactive discussion on basic rocketry principles, and guiding participants in the process of successfully constructing model rockets. During a short break, the Rocket Owls will introduce their goals for the NASA Student Launch Competition, along with the strategies for meeting those goals.

The workshops will end with students launching the rockets that they built. Before launch, the Rocket Owls will ask the participants to predict the behavior of their rocket, followed by an after-launch discussion comparing their hypotheses to the actual rocket's behavior.

Evaluation

The Rocket Owls will use pre- and post-activity surveys to determine the impact of the outreach program on the participants. The posters created and presented by the 5th grade students participating in the Junior Rocket Owls program and 7th grade students participating in the It's Rocket Math! program will indicate the gains of these middle school students in rocketry-related concepts along with any improvement of their communication and technical writing skills.

Project Plan

1. Project Timeline

NASA SL Timeline

Figure 11 list all important deadlines and milestones of the project as well as the expected date of completion of each task

Figure 11: Main Event Timeline

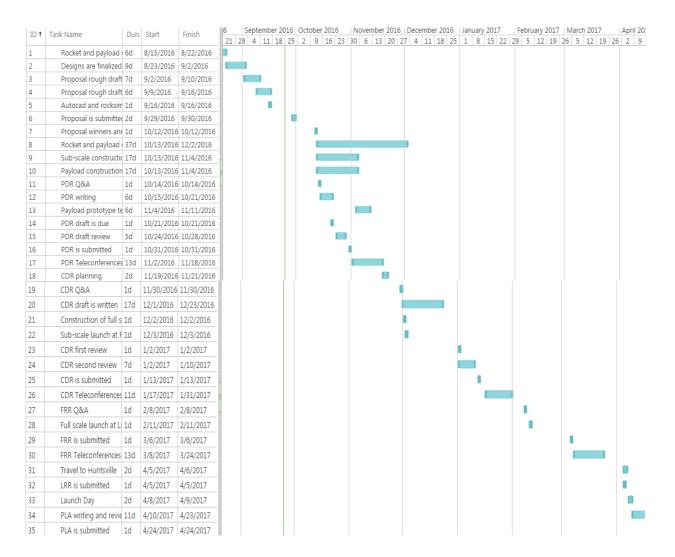


Figure 11 shows the Gantt chart detailing the NASA SL main events and their planned deadlines

The information represented in Figure 11 above is also listed in Table 23 below along with a brief description of the events.

Table 23: NASA SL Timeline		
Task	Description	Due
Rocket and payload are designed	Team designs rocket and payload	8/22/16
Designs are finalized	Final decisions are made regarding the designs of the rocket and payload	9/9/16
Proposal rough draft is due	Each teammate's section of the proposal is due for review	9/10/16
Rough Draft is reviewed by team	The proposal is edited by the team	9/16/16
AutoCAD and RockSim diagrams are due	All diagrams pertinent to the proposal are due	9/16/16
Proposal is submitted	Proposal is submitted to NASA	9/30/16
Proposal winners are announced	NASA announces proposal winners	10/12/16
PDR Q&A	Team members ask questions pertaining to the PDR	10/14/16
PDR writing begins	Sections of PDR are divided among team members and the team begins writing	10/17/16
Construction begins	Construction of sub-scale rocket and payload begins	10/13/16

Sub-scale construction is completed	Sub-scale rocket construction is completed	11/4/16
Payload prototype is tested	The containers strength and isolation components are tested	11/4/16
PDR draft is due	Each team member's section of the PDR is due for revisions	10/21/16
PDR draft is edited by team	PDR draft is edited collectively by the team	10/24/16
PDR is submitted	PDR is submitted	10/31/16
PDR Teleconferences are held	NASA holds teleconferences	11/2/16-11/18/16
CDR is planned	Section of the CDR are divided among the team member	11/19/16
Construction of the full scale rocket is completed	Full scale rocket construction is completed	12/2/16
CDR Q&A	Team members ask questions pertaining to CDR	11/30/16
Sub-scale launch at FAR	Sub-scale is launched at FAR and its flight analyzed	12/3/16
CDR draft is due	Each team member's section of the CDR is due for revisions	12/31/16
CDR is edited by team	Team edits CDR	1/2/17
CDR is reviewed by team	CDR is revised	1/9/17
CDR is submitted	CDR is submitted to NASA	1/13/17
CDR Teleconference are held	NASA teleconference are held	1/17/17-1/31/17

FRR Q&A	Team ask questions pertaining to FRR	2/8/17
Full scale launch	Full scale rocket launch at Lucerne	2/11/17
FRR is submitted	FRR is submitted to NASA	3/6/17
FRR teleconferences are held	NASA teleconference are held	3/8/17-3/24/17
The team travels to Huntsville	Team travels to Huntsville	4/5/17
LRR is submitted	LRR is submitted to NASA	4/5/17
NASA SL launch day	Launch day	4/8/17
Team begins writing PLA	PLA sections are divided among the team members and writing begins.	4/10/17
PLA is reviewed by team	Team reviews PLA sections	4/19/17
PLA is submitted	PLA is submitted to NASA	4/24/17

Figure 12 below gives an overview of all outreach dates.

Figure 12: Outreach Event Timeline

ID †	Task Name	Durs	Start	Finish	201	6	S	epte	mbe	r 201	6	Octob	oer i	2016		Nov	embe	er 20	16	Dec	emb	er 2	016	Jan	nuary	201	7	F	ebru	ary 2	2017	M	arch	1 20
10 1	Task Ivallie	Duic	Start	1 11 11 311	14	21	28	4	11	18 2	25	2	9	16 23	3	30 6	5 13	3 20	27	7 4	13	18	25	1	8	15	22	29	5	12	19	26	5	12
1	Parent Orientation	1d	8/27/2016	8/27/2016																														
2	Junior Rocket Owls	122d	9/17/2016	3/5/2017																														
3	Junior Rocket Owls	1d	9/17/2016	9/17/2016																														
4	Junior Rocket Owls	1d	10/15/2016	10/15/2016																														
5	Junior Rocket Owls	1d	11/19/2016	11/19/2016																														
6	It's Rocket Math	1d	11/19/2016	11/19/2016																														
7	Physics Festival Boot	1d	12/5/2016	12/5/2016																														
8	Science and Technol	1d	12/10/2016	12/10/2016																														
9	Junior Rocket Owls	1d	12/17/2016	12/17/2016	H																	ı												
10	It's Rocket Math	1d	12/17/2016	12/17/2016																														
11	Junior Rocket Owls	1d	1/21/2017	1/21/2017	H																													
12	It's Rocket Math	1d	1/21/2017	1/21/2017																														
13	Junior Rocket Owls	1d	2/18/2017	2/18/2017																											l			
14	It's Rocket Math	1d	2/18/2017	2/18/2017																											ı			
15	Azusa 8th grade Maj	1d	3/2/2017	3/2/2017																														
16	Junior Rocket Owls	1d	3/18/2017	3/18/2017																														
17	Junior Rocket Owls	1d	4/22/2017	4/22/2017																														
18	Junior Rocket Owls S	1d	5/13/2017	5/13/2017																														

Figure 12 lists all outreach events and their corresponding dates.

Table 24 lists all outreach events hosted by the Rocket Owls over the course of the NASA SL as well as a brief description of those events.

Table 24: Rocket Owls Outreach Schedule										
Event	Date	Description								
Junior Rocket Owls: Parent Orientation	8/27/16	Rocket Owls meet the parents of the new generation of Junior Rocket Owls								
Junior Rocket Owls: Outreach Workshop	9/17/16	Junior Rocket Owls are introduced to the program								
Junior Rocket Owls: Outreach Workshop	10/ 15/16	Rocket Owls introduce the 5 th grade students to basic rocketry concepts								
Junior Rocket Owls: Outreach Workshop	11/19/16	Junior Rocket Owls build and launch Estes model rockets								

It's Rocket Math	11/19/16	Rocket Owls introduce the 7 th grade students to basic rocketry concepts and mathematical relations
Physics Festival Booth	12/5/16	Rocket Owls present their NASA SL project to Citrus College Physics students
Science and Technology Day	12/10/16	Elementary and middle school children from local school districts participate in STEM hands-on activities facilitated by the Rocket Owls
Junior Rocket Owls: Outreach Workshop	12/17/16	Junior Rocket Owls design and create their payloads for the LoadStar rockets
It's Rocket Math	12/17/16	Rocket Owls introduce the 7 th grade students to relationship between angles and flight altitude
Junior Rocket Owls: Outreach Workshop	1/21/17	Junior Rocket Owls build the LoadStar rockets
It's Rocket Math	1/21/17	Rocket Owls introduce the 7 th grade students to more mathematical relationships related to rocketry
Junior Rocket Owls: Outreach Workshop	2/18/17	Junior Rocket Owls launch the LoadStar rockets
It's Rocket Math	2/18/17	The 7 th grade students build and launch Estes rockets
Azusa 8 th Grade Majors Fair	3/2/17	Rocket Owls introduce the 8 th grade from the Azusa Unified School District to basic physics and rocketry concepts
Junior Rocket Owls: Outreach Workshop	3/18/17	Junior Rocket Owls design and create their professional posters in preparation for the symposium

Junior Rocket Owls: Outreach Workshop	4/22/17	Junior Rocket Owls practice their presentations
Junior Rocket Owls Symposium	5/13/17	The Junior Rocket Owls and It's Rocket Math Symposium takes place at Citrus College

2. Budget

Table 25 lists the materials needed to complete the NASA SL project as well as an estimation of the individual and total costs.

	Table 25: Rocket Owls NASA SL Budget										
No.	Item	Qty.	Price/unit	Tax (~9%)	Shipping	Total					
1	Shear pins	5	\$3.10	\$0.00	\$4.88	\$20.38					
2	24" Nomex	2	\$13.99	\$0.00	\$5.85	\$33.83					
3	6" Blue tube coupler	1	\$19.95	\$1.80	\$12.10	\$34.93					
4	Rail button	2	\$4.65	\$0.00	\$4.88	\$9.98					
5	Fiberglass resin	1	\$42.99	\$3.87	\$10.96	\$58.81					
6	Fiberglass hardener	1	\$21.99	\$1.98	\$9.92	\$34.78					
7	Fiberglass laminating cloth 3 oz. satin weave	3 yrds	\$9.96	\$8.07	\$9.12	\$42.51					
8	Altimeter	4	\$44.95	\$0.00	\$7.00	\$186.80					
9	Palm sander	1	\$29.99	\$2.70	\$6.99	\$40.31					
10	Sandpaper 80 grit	1	\$15.38	\$1.38	\$5.99	\$22.75					
11	Synthetic grease	1	\$5.89	\$0.53	\$5.99	\$12.95					

12	Sandpaper 5"	1	\$14.40	\$1.30	\$5.99	\$21.69
	120 grit					
13	Dremel(cordless)	1	\$89.99	\$8.09	\$0.00	\$98.08
14	Nitrile gloves (size:M)	1	\$8.16	\$1.22	\$5.48	\$14.86
15	Terminal blocks	1	\$9.05	\$6.03	\$0.00	\$15.08
16	22-gauge stranded wire pack	1	\$19.95	\$2.41	\$6.83	\$29.19
17	Heat shrink tubing	1	\$10.99	\$0.70	\$5.33	\$17.02
18	Key switches	4	\$4.62	\$2.13	\$5.14	\$25.75
19	6" Blue tube	4	\$66.95	\$0.00	\$104.27	\$372.03
20	4" Blue tube	2	\$38.95	\$0.00	\$26.89	\$104.79
21	98mm E-bay	2	\$42.95	\$7.73	\$9.13	\$103.58
22	6" E-bay	2	\$71.95	\$12.95	\$19.51	\$178.12
23	Rocket epoxy (pt)	1	\$38.25	\$0.00	\$11.82	\$50.07
24	18" Nomex	2	\$10.49	\$0.00	\$5.09	\$26.07
25	6" Ogive 4:1 nose cone	1	\$129.00	Included	\$12.90	\$141.90
26	4" Ogive 4:1 nose cone	1	\$65.00	Included	\$8.95	\$73.95
27	1" Tubular webbing	40	\$0.45	\$1.62	\$5.99	\$25.61
28	1/4" Aircraft plywood	1	\$112.75	\$10.15	In store	\$122.90
29	Polycarbonate tubing	1	\$215.25	\$19.37	\$12.00	\$246.62
30	Silicone sheet	1	\$156.55	\$12.52	\$9.58	\$178.65
31	Zinc threaded rails	3	\$5.11	\$0.46	In store	\$16.71

32	Epoxy plastic bonder	2	\$4.26	\$0.38	In store	\$9.28			
33	9% Borated flexi-panel	1/2	\$75.00	\$0.75	\$12.00	\$92.75			
34	Polycarbonate tubing	2	\$15.20	\$1.37	\$10.00	\$43.14			
35	Tickets to Huntsville	6	\$518.00	\$46.62	\$0.00	\$3387.72			
36	Hotel expenses	2	\$134.00	\$12.06	\$0.00	\$292.12			
42	Food expenses	15	\$20.00	\$0.00	\$0.00	\$500.00			
43	Outreach supplies	12,000.00							
Gran	nd Total for supplies	\$18,636.71							

3. Funding Plan

As shown in Table 25, the projected cost of the project is \$18,552.71. The funds needed for the successful completion of the project as well as traveling to Huntsville and accommodations in Huntsville for the Rocket Owls team are provided by private and governmental organizations, as shown in Table 26 below.

Table 26: Funding Plan									
Funding Source	Amount (\$)	Used for							
GUSD	8,850.00	Supplies for the Junior Rocket Owls							
Citrus College Foundation Innovation Grant	1,000.00	Rocket Owls' activities							
Race to STEM Federal Grant	\$2,000.00	Rocket supplies							
California Space Grant Consortium	\$2,000.00	Supplies for rocketry projects							
Private donations	\$3,000.00	Rocket Owls' activities							

Mathematical association of America-Tensor Foundation	\$6,000.00	Supplies for the It's Rocket Math! program and traveling expenses for the Rocket Owls.
Total	\$22,850.00	

4. Plans for Rocket Project Sustainability

In the interest of sustaining the rocketry projects at Citrus College as well as in the community, the Rocket Owls plan to maintain their long standing collaboration with Cal Poly Pomona and JPL, as well as develop new relationships with local 4-year universities and industry, including University of Southern California, California State University at Fullerton, and NASA Armstrong.

In addition, the team will submit abstracts of their research for the annual Student Research Conference for California Community Colleges hosted by the University of California Irvine. Participating in this conference gives the team the opportunity to highlight their research, receive scholarships, have their research published, and gain experience in a professional and academic setting. Moreover, the Citrus College Rocket Owls will take advantage of their participation in this event to disseminate their results of the NASA SL project to over 200 students from other community colleges located in Southern California.

A new Rocketry and Robotics team will be developed at Citrus College during the fall semester of the 2016-2017 academic year. The Rocket Owls will conduct classroom presentations in the college's STEM classes in order to recruit students to be part of this team. The students in the Rocketry and Robotics team will be mentored by the Rocket Owls throughout the year in order to gain rocketry knowledge and skills and with the purpose of becoming the next generation of Rocket Owls at Citrus College that will participate in the 2017-2018 NASA SL.

The Rocket Owls team will also conduct presentations in the community (Glendora Public Library, Glendora Kiwanis Club) and ask local business owners for their support. All sponsors will receive a thank you card with a picture of the team and the rocket as well as email updates on the project's development. The team will also accept donations online using

their Facebook page:

(https://www.facebook.com/CitrusCollegeRocketOwls/?ref=aymt_homepage_panel)

References

- 1. Friends of Amateur Rocketry [Internet]. 2015. [Cited 2015 Aug 25]. Available from: http://www.friendsofamateurrocketry.org/
- 2. Doc.No. 1580, 28 FR 6722, June 29, 1963, as amended by Amdt. 101-4, 39 FR 22252, June 21, 1974
- 3. Doc. No. 1580, 28 FR 6722, June 29, 1963, as amended by Amdt. 101-6, 59 FR 50393, Oct. 3, 1994
- 4. www.thrustcurve.org
- 5. http://www.ptsllc.com/intro/polycarb_intro.aspxr.htm
- 6. http://www.loctiteproducts.com/p/13/7/epxy_plstc_s/overview/Loctite-Epoxy-Plastic-Bon der.htm
- 7. http://www.linex.com/protective-coatings
- 8. https://spaceflightsystems.grc.nasa.gov/education/rocket/rktstomp.html
- 9. http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch14/phase.php
- 10. Editors of Encyclopedia Britannica(21, April,2016) "Polycarbonate (PC)" Retrieved from http://stardust.jpl.nasa.gov/aerogel_factsheet.pdf
- 11. http://www.chemguide.co.uk/physical/basicrates/temperature.html
- 12. Fire Prevention in Space. [Cited 2016 September 11]. Available from: http://www.nasa.gov/missions/shuttle/f_fireprevention.html
- 13. Polymer Flammability. [Cited 2016 September 11]. Available from: http://www.fire.tc.faa.gov/pdf/05-14.pdf
- 14. http://spaceflight.nasa.gov/spacenews/factsheets/pdfs/radiation.pdf Space Radiation
- 15. Shieldwerx, "SWX-227 9% Borated Flexi-panel", Retrieved from http://www.shieldwerx.com/assets/swx-227.pdf 9% Borated Flexi Panel Specs
- 16. http://quest.nasa.gov/aero/planetary/mars.html
- 17. Ebbing DD, Gammon SD. 2013. General Chemistry. 10Ed. Mary Finch.
- 18. http://www.gplastics.com/pdf/polycarbonate.pdf
- 19. http://www.loctiteproducts.com/tds/EPXY_PLSTC_S_tds.pdf
- 20. http://www.skf.com/group/products/seals/materials/elastomers/nbr/nitrile-rubber/index.ht ml
- 21. http://www.nasa.gov/audience/foreducators/topnav/materials/listbytype/Rockets.html

Appendix A: Citrus College Profile

Since 1967, Citrus College has been offering a quality educational experience for the communities of Azusa, Glendora, Duarte, Claremont and Monrovia. It is currently home to over 12,000 students, the majority of whom are considered ethnic minorities, and is dedicated to creating a diverse and welcoming learning environment that supports educational achievement for all of its students.

Citrus College offers many programs that promote community awareness in numerous STEM related fields. Biological and Physical Sciences is the second most common major in the school. There are also numerous extracurricular programs aimed at increasing interest in STEM subjects within the community, such as the SIGMA (Support and Inspire to Gain Motivation and Achievement) peer mentor program; the PAGE (Pre-Algebra, Algebra, Geometry Enrichment) summer K-12 mathematics enrichment program; and the Secrets of Science Summer Camp that provides K-12 students with practical experience in biology, chemistry, astronomy and physics laboratories.

Students at Citrus College are active participants in many STEM-related activities. In past years, students have participated in NASA's Reduced Gravity Education Flight Program (RGEFP), have launched a near-space sounding balloon, and have also traveled to Huntsville, Alabama and to Salt Lake City, Utah as participants in the 2013, 2014, and 2015 USLI SLP (University Student Launch Initiative Student Launch Projects). In 2015, three teams of students participated in the NASA/CASGC Microcomputer and Robotics Internship.

Appendix B: MSDS Information

Appendix is available as a separate document and includes the complete MSDS information for the following items

- Acetone
- Alkaline Batteries
- Ammonium Perchlorate Composite Motors
- Black Powder
- Epoxy
- Fiberglass
- Isopropyl Alcohol
- Lithium Batteries
- Nitrile Gloves
- Nylon
- Paint
- Plastic
- Solder
- Steel wood
- Sunscreen
- Superglue
- Wire
- Wood Dust/Filler

Appendix C: Protocols

Appendix is available as a separate document and included the protocols that the team developed. The protocols will be continuously be update during the duration of the project and will be kept inside the safety binder which will be located where construction will take place

- Epoxying
- Hot glue gun
- Hand Drill/Drill Press
- Soldering Iron
- Painting
- Table Saw
- CNC machine
- Jigsaw
- Dremel
- Sanders
- Wet/Dry Vacuum
- Wind Tunnel

Appendix D: Safety Contract

Safety Contract

All members of the team understand and agree to the following safety rules and regulation provided by the NASA Student Launch Proposal documentation:

1.6. Safety Regulations

1.6.1 Range safety inspection of each rocket before it is flown. Each team shall comply with the determination of the safety inspection or may be removed from the program

1.6.2. The RSO has the final say on all rocket safety issues. Therefore, the RSO has the right to deny the launch of any rocket for safety reasons.

1.6.3 Any team that does not comply with the safety requirements will not be allowed to launch their rocket.

All team members will also understand the safety procedures outlined in pervious section pertaining to:

- The risk and mitigation of hazardous materials
- Using power tools
- General Safety

All team members must understand and abide by the following as mention above:

- State and local laws
- FAA rules and regulation
- Fire prevention code

By signing this contract, the team members acknowledge that they have read and understood the information detailed in the safety section. And agree to abide by the aforementioned rules outlined in the safety contract. Team members will not be allowed to work on this project without signing the contract.

Name (Printed) Name (Printed) Nymu Signature	Date: 09/26/16
Name (Printed) Signature Molina Molina Signature	Date: 09/26/16
Name (Printed) Signature Lillian Chang Name (Printed)	Date: <u>09/26/16</u>

Janet Blancas Alonso
Name (Printed)
Signature

Date: 06/24/16

Date: 06/24/16